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Kurzfassung 

 

Die Arbeit beschreibt die hydrographisch-hydrochemischen Bedingungen in der westlichen und 

zentralen Ostsee für das Jahr 2017. Basierend auf den meteorologischen Verhältnissen werden 

die horizontalen und vertikalen Verteilungsmuster von Temperatur, Salzgehalt, Sauerstoff/ 

Schwefelwasserstoff und Nährstoffen mit saisonaler Auflösung dargestellt. 

 

Für den südlichen Ostseeraum ergab sich eine Kältesumme der Lufttemperatur an der Station 

Warnemünde von 31,7 Kd. Im Vergleich belegt der Winter 2016/17 den 15. Platz der wärmsten 

Winter seit Beginn der Aufzeichnungen im Jahr 1948 und wird als mild klassifiziert. Mit einer 

Wärmesumme von 159,5 Kd rangiert der Sommer im Mittelfeld der 70jährigen Datenreihe und 

reiht sich auf Platz 28 der wärmsten Sommer ein. Das Langzeitmittel liegt bei 153,4 Kd. 

Auf der Grundlage von satellitengestützten Meeresoberflächentemperaturen (SST) war 2017 das 

elft- wärmste Jahr seit 1990 und mit 0,24 K etwas über dem langfristigen SST-Mittel. März, April 

und Oktober - Dezember trugen durch ihre positiven Anomalien zum Durchschnitt bei. Juli und 

August waren durch negative Anomalien gekennzeichnet. Die Anomalien erreichten Höchstwerte 

von +2 K und -3 K. 

Die Situation in den Tiefenbecken der Ostsee war im Wesentlichen geprägt durch bodennah 

einsetzende Stagnation im östlichen Gotland Becken und Belüftung der mittleren Wassersäule 

oberhalb 150 m im Zuge kleinerer Einströme. Zu Jahresbeginn wurde das im nördlichen 

Zentralbecken gelegene Farö Tief erstmals innerhalb der aktuellen Einstromphase belüftet. Im 

Jahresverlauf 2017 wurden zwei weitere schwache Einströme mit Volumina zwischen 210 km³ 

und 188 km³ im Februar sowie Oktober registriert. Zusammenfassend kann gesagt werden, dass 

die Auswirkungen der seit 2014 beobachten Phase von verstärkten Wasseraustauschprozessen 

mit entsprechenden Konsequenzen für die biogeochemischen Kreisläufe abklingen. 

 

Abstract 

 

The article summarizes the hydrographic-hydrochemical conditions in the western and central 

Baltic Sea in 2017. Based on meteorological conditions, the horizontal and vertical distribution 

of temperature, salinity, oxygen/hydrogen sulphide and nutrients are described on a seasonal 

scale. 

 

For the southern Baltic Sea area, the “cold sum” of the air temperature of 31.7 Kd in Warnemünde 

amounted to a mild winter in 2014/15 and ranks as 15th warmest winter since the beginning of 

the record in 1948. The summer “heat sum” of 159.5 Kd ranks on 28th position of the warmest 

summers over the past 70 years and is slightly above the long-term average of 153.4 Kd. 

Based on satellite derived Sea Surface Temperature (SST) 2017 was the eleventh-warmest year 

since 1990 and with 0.24 K slightly above the long-term SST average. March, April and October - 

December contributed to the average by their positive anomalies. July and August were 

characterized by negative anomalies. The anomalies reached maximum values of +2 K and -3 K. 

 

The situation in the deep basins of the Baltic Sea was mainly coined by beginning stagnation at 

bottom-near water depths of the eastern Gotland Basin and ongoing ventilation of the upper part 
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of the deep-water above 150 m as a consequence of weak inflows. For the first time within this 

phase of intensified inflow activity, starting in 2014, the ventilation of the Farö Deep at the 

Northern Central Basin was registered at the beginning of the year. In the course of 2017 two 

weak inflows showing total volumes of 210 km³ (February) and 188 km³ (October) were 

registered. In conclusion, the impact of the observed phase of intensified water exchange 

processes with subsequent consequences for the biogeochemical cycles is weakening.  

 

1. Introduction  

 

This assessment of hydrographic and hydrochemical conditions in the Baltic Sea in 2017 has 

partially been produced on the basis of the Baltic Sea Monitoring Programme that the Leibniz 

Institute for Baltic Sea Research Warnemünde (IOW) undertakes on behalf of the Federal 

Maritime and Hydrographic Agency, Hamburg and Rostock (BSH). Within the scope of an 

administrative agreement, the German contribution to the Helsinki Commission’s (HELCOM) 

monitoring programme (COMBINE) for the protection of the marine environment of the Baltic Sea 

has been devolved to IOW. In 2008, the geographical study area was redefined: it now stretches 

from Kiel Bay to Bornholmsgat, and thus basically covers Germany’s Exclusive Economic Zone. 

In order to safeguard long-term measurements and to ensure the description of conditions in the 

Baltic Sea’s central basins, which play a decisive role in the overall health of the sea IOW has 

contributed financially towards the monitoring programme since 2008. Duties include the 

description of the water exchange between the North Sea and the Baltic Sea, the hydrographic 

and hydrochemical conditions in the study area, their temporal and spatial variations, as well as 

the identification and investigation of long-term trends. 

 

Five routine monitoring cruises were undertaken in 2017 in all four seasons. The data obtained 

during these cruises, as well as results from other research activities by IOW, form the basis of 

this assessment. Selected data from research institutions elsewhere in the region, especially the 

Swedish Meteorological and Hydrological Institute (SMHI) and the Maritime Office of the Polish 

Institute of Meteorology and Water Management (IMGW), are also included in the assessment. 

Figure 1 gives the locations of the main monitoring stations evaluated; see NAUSCH et al. (2003) 

for a key to station nationality. 

 

HELCOM guidelines for monitoring in the Baltic Sea form the basis of the routine hydrographical 

and hydrochemical monitoring programme within its COMBINE Programme (HELCOM, 2000). The 

five monitoring cruises in January/February, March, May, August and November were performed 

RV Elisabeth Mann Borgese. Details about water sampling, investigated parameters, sampling 

techniques and their accuracy are given in NEHRING et al. (1993, 1995). 

 

Ship-based investigations were supplemented by measurements at three autonomous stations 

within the German MARNET environmental monitoring network. Following a general 

maintenance, the ARKONA BASIN (AB) station has been in operation again since June 2012. 

DARSS SILL (DS) station was also overhauled, and went back into operation in August 2013. The 

ODER BANK (OB) station was in operation from beginning-April to mid-December 2017; it was 
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taken out of service for a break over the winter of 2017/2018. A second system of a new buoy 

construction which is resistant against icing was tested in parallel observation at the Oder Bank 

position. See chapters 3-5 for details. 

Besides meteorological parameters at these stations, water temperature and salinity as well as 

oxygen concentrations were measured at different depths: 

 

AB:    8 horizons T + S +  2 horizons O2 

DS:  6 horizons T + S +  2 horizons O2 

OB:    2 horizons T + S +  2 horizons O2 

 

 

All data are transmitted via METEOSAT to the BSH database as hourly means of six 

measurements (KRÜGER et al., 1998; KRÜGER, 2000a, b). An acoustic doppler current profiler 

(ADCP) at each station records current speeds and directions at AB and DS. Each of the ADCP 

arrays at AB and DS is located on the seabed some two hundred metres from the main station; 

they are protected by a trawl-resistant bottom mount mooring (designed in-house). They are 

operated in real time, i.e. via an hourly acoustic data link, they send their readings to the main 

station for storage and satellite transmission. For quality assurance and service purposes, data 

stored by the devices itself are read retrospectively during maintenance measures at the station 

once or twice a year. 

 

Monitoring of Sea Surface Temperature across the entire Baltic Sea was carried out on the basis 

of individual scenes and mean monthly distributions determined using NOAA-AVHRR 

meteorological satellite data. All cloud-free and ice-free pixels (pixel = 1 × 1 km) from one month’s 

satellite overflights were taken into account and composed to maps (SIEGEL et al., 1999, 2006). 

2017 was assessed in relation to the mean values for 1990-2017 as the eleventh-warmest year 

since 1990. The results were also summarized in a HELCOM environmental fact sheet (SIEGEL & 

GERTH, 2018).  
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Fig. 1: Location of stations (■ MARNET- stations) and areas of oxygen deficiency and hydrogen 

sulphide in the near bottom layer of the Baltic Sea. Bars show the maximum oxygen and 

hydrogen sulphide concentrations of this layer in 2017; the figure additionally contains the 70 m 

-depth line 
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2. Meteorological Conditions 

 

The following description of weather conditions in the southern Baltic Sea area is based on an 

evaluation of data from the Germany’s National Meteorological Service (DWD), Federal Maritime 

and Hydrographic Agency (BSH), Swedish Meteorological and Hydrological Institute (SMHI), 

Institute of Meteorology and Water Management (IMGW), Freie Universität Berlin (FU) as well as 

IOW itself. Table 1 gives a general outline of the year’s weather with monthly mean temperature, 

humidity, sunshine duration, precipitation as well as the number of days of frost and ice at 

Arkona weather station. Solar radiation at Gdynia weather station is given in addition. The warm 

and cold sums of air temperature at Warnemünde weather station, and in comparison with 

Arkona, are listed in tables 2 and 3. 

 

According to the analysis of DWD (DWD, 2017), 2017 was again a warm year on global and 

national scale. Nearly all regions in Germany recorded mean temperatures above the long-term 

mean of the reference period 1981-2010. March 2017 was the warmest since the beginning of 

continuous measurements in 1881. The mean annual temperature of 9.6 °C was about 0.7 K 

higher than the average for 1981-2010 and 0.1 K slightly higher than the previous year 2016. The 

year began in January with cold temperatures throughout Germany showing anomalies of 

monthly means up to -5.1 K in the south and -1.3 K in the north along the coast compared to 1981-

2010. Along Germany’s Baltic coast the winter situation changed to warmer temperatures in the 

mid of February and the months February to June each exceeded the thirty-year mean by 0.4-2 K. 

July was colder than usual by -1 K and August-September were balanced. The end of the year was 

warm again with anomalies of 1-1.6 K from October to December (c.f. Table 1). 

Across Germany, the amount of precipitation was 854 mm, 6 % higher than the average of 

808 mm and above 723 mm in 2016. In a regional comparison Schleswig-Holstein (985 mm) and 

Mecklenburg-Vorpommern (789 mm) showed values of 120 % and 128 % of their long-term 

average for 1981-2010. The driest months at the coast were January and May. The longest periods 

without precipitation in the German territory happened from March 22nd to April 14th at the 

stations Trier and Berus in south-western Germany. The most rain fall at the station Brocken 

(central Germany) with 280 mm in 4 days at the end of July.  

The average annual sum of 1,596 hours of sunshine fall slightly below the long-term average by 

0.3 % (5 hours) and were slightly lower than in 2016 with 1,607 hours. The national ranking is led 

by Stuttgart-Echterdingen (1,950 hours) in the south-western part. The station Arkona at the isle 

of Rügen is ranked on second place and recorded 1,764 hours. December was the least sunny 

month: with an average of 28 hours, it was 30 % below the long-term average. The peak value 

belonged to June: 241 hours, followed by May: 224 hours.  
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2.1 Ice Winter 2016/17 

 

For the southern Baltic Sea area, the cold sum of air temperature of 31.7 Kd at Warnemünde 

station amounted to a warm winter in 2016/17 (Table 2). This value plots below the long-term 

average of 101.8 Kd in comparative data from 1948 onwards and ranks as 15th warmest winter in 

this time series. In comparison, Arkona station at 27.2 Kd (Table 3) is slightly lower, and 

represents a relatively low value like the previous winters 2015/2016 (36.1 Kd), 2014/2015 (8.1 

Kd) and 2013/2014 (42.1 Kd) compared to 87.5 Kd in winter 2012/2013. Given the exposed 

location of the north of the island of Rügen (it is surrounded by large masses of water), local air 

temperature developments are influenced even more strongly by the water temperature of the 

Baltic Sea (a maritime influence). In winter, milder values often occurred, depending on the 

temperature of the Arkona Sea, while in summer, the air was more strongly suppressed 

compared with more southerly coastal stations on the mainland. Except two short cold spells in 

January and February 2017 a very warm wintertime was recorded (Table 1). Overall, 43 days of 

slightly frost and 7 days of ice were recorded at Arkona compared to 37 days of frost and as well 

7 days of ice in the mild winter of 2015/16 (NAUMANN et al., 2017). The winter’s warm temperature 

profile was also reflected in icing rates.  

According to SCHWEGMANN & HOLFORT (2017), this ice season in the Baltic Sea is classified as weak. 

Given warm weather conditions, the maximum extent of ice was reached at 12th February 2017 

with an area some 103714 km². This ice coverage is ranked on 64th place since the year 1720, 

starting at the lowest value of 49 000 km² (year 2008) in this time series of 298 years. The 

maximum extent of ice corresponded to some 25 % of the Baltic Sea’s area (415 266 km²), and 

was largely centred on the northern half of the Gulf of Bothnia, marginal areas of the northern 

and eastern Gulf of Finland (Newa Bight) as well as the Estonian coast between the mainland 

and the isles of Hiiumaa and Saaremaa. The south coast of the Baltic Sea remained free of ice, 

except sheltered areas in coastal lagoons. The value of 104 000 km² is only slightly lower than in 

the previous year 2016/2017 (114 000 km²) and recent years show similar maximum ice 

coverages: 51 000 km² in 2014/15, 95 000 km² in 2013/14 except 187 000 km² in 2012/13. By 

some 49 %, the year 2017 fell short of the average of 212 000 km² in the time series from 1720 

onwards (Figure 2). By way of comparison, it also fell short of the very low 30-year average of 

138 000 km².  

 

 

 

 



10 

 

Fig. 2: Maximum ice covered area in 1000 km² of the Baltic Sea in the years 1720 to 2017 (from 

data of SCHMELZER et al., 2008, SCHWEGMANN & HOLFORT, 2017). The long-term average of 212 000 

km² is shown as dashed line. The bold line is a running mean value over the past 30 years. The 

ice coverage in the winter 2016/2017 with 104 000 km² is encircled. 

 

Along Germany’s Baltic Sea coast, local conditions were assessed as a weak ice winter on the 

basis of an accumulated areal ice volume of 0.16 m (SCHWEGMANN & HOLFORT, 2017). After a slightly 

stronger value of 0.35 m in the previous year (SCHWEGMANN & HOLFORT, 2016), it is the fifth weak 

ice winter in a role. Besides various other indices, this index is used to describe the extent of 

icing, and was introduced in 1989 to allow assessment of ice conditions in German coastal 

waters (KOSLOWSKI, 1989, BSH, 2009). Besides the duration of icing, the extent of ice cover, and 

ice thickness are considered, so as to take better account of the frequent interruptions to icing 

during individual winters. The daily values from the 13 ice climatological stations along 

Germany’s Baltic Sea coast are summed. The highest values yet recorded are as follows: 26.83 m 

in 1942; 26.71 m in 1940; 25.26 m in 1947; and 23.07 m in 1963. In all other winters, values were 

well below 20 m (KOSLOWSKI, 1989). At 0.16 m, the accumulated areal ice volume for winter 

2015/16 is in line with low values of recent years: 0.35 m in 2015/16, 0.009 m in 2014/15, 0.37 m 

in 2013/14, 0.38 m in 2012/13 and 1.12 m in 2011/12. First icing was observed early at mid-

November in the mouth of the river Schlei and three short icing periods of a few days occurred in 

sheltered areas of the German Baltic Sea coast between mid-November and beginning of 

December 2016. A longer period of 5-30 cm ice thickness was observed in this area between 

January 5th and February 20th. Along the Western Pomeranian lagoon chain icing of up to 48 days 

were registered in sheltered areas of the Oder lagoon (Kamminke harbour). At other areas, the 

number of recorded ice days was thus as follows: 43 at Dänische Wiek (inner Greifswald lagoon), 

32 at Darss-Zingst lagoon chain and lagoon east of Rügen island (station Vierendehl), 11 days at 

Osttief (Pommeranian Bight, western part), 11 days at Rostock harbour; 13 days at Wismar 

harbour, 29 ice days at the mouth of the river Schlei and 2 days at the Flensburg Fjord. More open 

German sea areas all remained ice-free, according to the BSH maritime data portal and 

SCHWEGMANN & HOLFORT (2017). In the winter of 2016/17, an accumulated areal ice volume for the 
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coast of Mecklenburg-Vorpommern of 0.22 m and Schleswig-Holstein of 0.09 m was calculated, 

which is lower than the previous winter season of 0.45 m and 0.23 m. At farther east lagoons at 

the southern Baltic Sea first icing occurred since January 8th in the Curonian Lagoon and since 

January 9th in the Vistula Lagoon and ended at March 15th. A maximum ice thickness of 25 cm was 

observed. In the northern part of the Baltic Sea icing occurred from November 8th and to 

beginning of June (Bothnian Sea). The maximum aerial extent was 20 % less compared to the 

previous wintertime, but the icing volume was remarkedly higher (17 %) in 2016/2017 

(SCHWEGMANN & HOLFORT, 2017). This is the reason why melting went slow.   

 

2.2 Weather Developments in 2017 

 

Over the course of the year 2017, pressure systems and air currents were prevailing from westerly 

to south-westerly directions (cf. Figures 4a, 5b, 6). These wind directions account for about 75 % 

of the annual sum and the progressive wind vector curve of 2017 roughly follows the climatic 

mean situation (cf. 4a, b). The Institute of Meteorology at FU Berlin has given names to  high  and 

low pressure systems since 1954; a sponsorship deal (‘Wetterpatenschaften’) has also been in 

place since 2002 (FU-Berlin, 2016). 

 

At the beginning of January, low pressure system “Deep Axel” (977 hPa) crossed Scandinavia and 

triggered a strong storm surge at the southern Baltic Sea in the night January 4th-5th (Fig. 3). The 

wind direction shifted from northwest to northeast and blew persistent around 6-7 Bft, gusts up 

to 26.8 m/s, inducing highstands of 1.83 m (Wismar Bight) above mean sea level. Especially, the 

coast of Usedom island showed strong coastal retreat by this event. Cold winter weather was 

typical during the month and caused by succession of extensive high-pressure cells across 

central Europe (highs “Angelika”, “Brigitta”, “Christa” and “Doris”). Outflow conditions were 

dominating, resulting in a sea level drop from 64 cm MSL (January 4th) to -2 cm MSL to the end of 

the month (Fig. 7a). 

The temperature profile for January varied regional with slightly cold temperatures at the coasts 

(-0.2 K to -1.3 K) to very cold temperatures in southern Germany of up to -5.1 K (Freiburg) 

compared to the thirty-year average 1981-2010. Sunshine duration in most areas of Germany was 

above average, being the fourth sunniest January since 1951 (avg. 73 h, +43 %). For instance, at 

Arkona station a positive anomaly of sunshine duration of 138 % (62 hours) was recorded. 

Precipitation was generally low, mainly occurring as snowfall. The German Baltic Sea coast varied 

between -42 % at Schleswig-Holstein (station Schleswig) and -15 % to -12 % at stations 

Warnemünde and Ückermünde of Mecklenburg-Vorpommern.  
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Fig. 3: Tide gauge data during at the German Baltic Sea coast during the storm surge from 2017 

January 4th-5th (data: Pegelonline, www.pegelonline.wsv.de) 

 

Too mid of February, high pressure was dominant across northern Europe (high “Erika”) and low-

pressure cell passed southerly. Cold winter weather continued at the southern Baltic Sea coast. 

Since February 16th, the situation changed to mild temperatures of 3-10 °C as daily mean. A 

succession of cyclones passed northern Europe (lows “Pierre”, “Qerkin”, “Rolf”, “Stefan”, 

“Thomas” and “Udo”) and westerly to south-westerly winds led to a rapid sea level rise of 61 cm 

at station Landsort Norra (February 13th to March 3rd) comprising a volume of 210 km3 (Figure 7). 

Across Germany the weather situation was generally warm, with positive anomalies up to 3.4 K 

in the southern part and 0.5-1.1 K along the coast. Along Germany’s Baltic Sea coast temperature 

anomalies of 0.7 K occurred, increased precipitation (Arkona station: 141 %) and sunshine 

duration slightly below the long-term mean occurred. 

 

In March, the warm temperatures continued, showing an anomaly of +2.9 K (nationwide). It was 

the warmest period in March ever recorded since the beginning of measurements in 1881. The 

weather regime changed a lot during the month from westerly cyclones to throughs across 

western and central Europe, high pressure in the mid of the month to westerly cyclones and again 

to a high-pressure situation at the end. No major storm events occurred and daily means wind 

speed varied between 3.3 and 13.7 m/s (4 days above 10 m/s). The mean sea level of the Baltic 

Sea slightly dropped, rose and dropped again, showing a variation between 24 cm MSL and -6 

cm MSL (Figure 7a). Along the Germany’s Baltic Sea coast, monthly averages deviated by 0.3 K. 

At the station Arkona, a monthly mean of 4.9 °C (2 K deviation) was measured. Precipitation 

amounts between 85 % at Schleswig, 105 % at Rostock to 155 % at Arkona compared to the long-

term average 1981-2010. The average sunshine duration was 114 hours, 30 % above the long-

term average of 114 hours. The station Arkona registered 123 hours of sunshine (95 %).  

 

April showed the typical changeable weather by dominance of low pressure systems crossing 

Northern Europe. Extensive high-pressure cells dominated the situation in the central to 

southern part. In general, low temperatures were registered nationwide (-0.9 K), ranging from -

1.5 k in the south and -0.3 K to -0.7 K in the north. From April 10th-14th the wind blew stronger than 

10 m/s five days in a role from west to west-northwest and the sea level rose from -10 cm MSL to 

24 cm MSL (Figure 7a). Later on, the sea level decreased to -5 cm MSL (April 20th) and increasing 

again to 27 cm MSL (April 24th). Temperatures along Germany’s Baltic Sea coast varied between 

-0.7 K (station Ückermünde) and 0.4 K above the long-term average (station Arkona). Amounts of 

precipitation were generally to high but varied greatly from area to area: in Schleswig-Holstein, 

Wismar Bight 

Warnemünde 

Barhöft (lagoon) 

Saßnitz (Rügen island) 

Greifswald  (lagoon) 

Koserow (Usedom island) 
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it was 58 % to wet in Schleswig; 11 % to wet in Rostock, 13 % to wet at Arkona and 38 % to wet in 

Ueckermünde on the Polish border. An average of 153 hours of sunshine across Germany was 

10 % below the long-term average. In Northern Germany, the sun shone longer than in southern 

parts, for instance 194 hours in Rostock/Warnemünde and 193 hours at Arkona. The nationwide 

maximum was registered in Saarbrücken in the southwestern part of Germany (220 hours). 

  

In May, the weather was mainly influenced by high pressure cells across Central Europe and 

Scandinavia. In the beginning, very strong north-easterly winds occurred between May 2nd-5th. 

Low-pressure “Victor” crossed central Europe with 18.1 m/s, the highest daily average of the year 

was measured at Arkona station (Figure 5a). Later on, only moderate winds occurred with daily 

means up to 8 m/s. At May 31th low-pressure “Gerhard” crossed Scandinavia showing westerly 

winds of 12.3 m/s (daily mean). The sea level at Landsort Norra dropped quickly to -23 cm MSL 

(March 17th) by easterly winds in the beginning of May (Figure 7). Afterwards the sea level 

fluctuated only slightly to the end of May. In general, too warm temperatures were recorded 

nationwide (1.1 K). Along the German Baltic Sea coast, the air temperatures showed warm values 

of 1.6 K at Schleswig, 0.9 K at Rostock and 0.5 K at Ückermünde. Arkona showed a monthly mean 

of 11.5 °C (+1.1 K).  Amounts of precipitation varied locally, for example Schleswig -11 % to dry, 

Rostock -28 % to dry, Arkona -49 % to dry and Ückermünde 92 % (102 mm) to wet compared to 

the long-term average. The sunshine duration was with 224 hours in mean, 7 % above the long-

term mean of 210 hours. Fürstenzell (south-east Germany, close to Austria) registered 284 hours 

as sunniest station, followed by Arkona with 272 hours (100 %).  

 

During June, the weather changed often between influence of low-pressure and high-pressure. 

Dry, warm and sunny phases were interrupted by events of strong precipitation, hail and 

thunderstorms. Remarkable is that at the last three days of June fall more than 100 mm of rain in 

some areas of north-eastern Germany (lows “Quirin” and “Rasmund”). Airport Berlin Tegel 

registered the nationwide monthly maximum of 261 mm (458 %). Mainly western wind directions 

of moderate intensity were dominant, interrupted by a short phase of easterly winds from June 

2nd-6th (Figure 5b). Only five days showed a stronger daily mean of 10-12 m/s (June 12th, 13th, 24th, 

26th and 29th). The sea level rose stepwise from -2 mm MSL to 29 cm MSL at the central Baltic Sea 

during the month (Figure 7a). Along the German Baltic Sea coast the temperature was about 1.3 

K warmer than the average 1981-2010, for instance Arkona of 15.3 °C (+ 1.1 K). Overall, June was 

too rainy with a mean of 90 mm precipitation compared to the long-term average of 77 mm (+18 

%). Only a small area of central spanning from Düsseldorf (-48 %) to Magdeburg (-17 %) and 

Frankfurt am Main (-57 %) was to dry. In contrast areas at the Baltic Sea coast registered positive 

values, at Schleswig 123 mm (+64 %), Warnemünde 118 mm (+64 %), Arkona 89 mm (+53 %) and 

Ückermünde 114 mm (+90 %). At 241 hours, sunshine duration was about 19 % above the average 

of 204 hours, but at the coast the sun shone a bit less compared to southern Germany. Arkona 

registered a value of 264 hours (104 %). 

 

The first half of July was influenced by low pressure cells crossing Scandinavia and Central 

Europe from the North Atlantic (lows “Rasmund”, “Saverio”, “Till”, “Uwe”, “Vincent”, “Xavier”, 

“Wolf” and “Ygit”) causing westerly winds (Figure 5b). Since July 18th high-pressures “Irmingard” 

and “Hanna” dominated the weather moving from central Europe to Scandinavia. Southerly low-
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pressures crossed central Europe (lows “Alfred”, “Bernhard”, “Christoph”) inducing easterly 

winds. Generally moderate winds occurred in July (daily means of 2-8 m/s). Only at the July 25th 

a daily mean of 10.8 m/s was recorded. The trend of sea level rise at the central Baltic Sea during 

June stopped at the beginning of the month and the level fluctuated between 29 cm MSL to 15 

cm MSL up to June 20th. Afterwards the sea level dropped to the end of the month to -4 cm MSL 

by easterly winds (Figure 7). The monthly mean temperature accounts nationwide 18.1 °C (+0.1 

K) and at the Baltic around -0.7 K to -1 K below the long-term average. Only central and southern 

Germany registered slightly positive mean values. The precipitation was generally much too high 

with 132 mm (+58 %), but varied across Germany from slightly higher values in the south to 

enormous values along the Baltic Sea coast (Rostock 138 mm (+116 %), Arkona 102 mm (+89 %) 

and Ückermünde 132 mm (+128 %). The sun shone 196 hours in average and was 11 % below the 

reference period 1981-2010. Longest sunshine duration was measured at station Fürstenzell (245 

hours, 103 %) in south-east Germany. Arkona recorded 239 hours (-14 %). 

 

In August, the inconstant weather development was similar compared to July. Starting with 

dominance of low pressures crossing Scandinavia (lows “Fritz”, “Hartmut”, “Ildefoms” and 

“Jürgen”) and high pressures “Jolanda”, “Katja” and “Lisa” in south-eastern and eastern Europe, 

westerly winds occurred in combination with relatively cold temperatures. At August 19th-23th, 

high-pressures “Nilüfer” and “Queena” across central Europe were decisive for the weather 

before westerly cyclones dominated again the situation. Only moderate winds of daily means 

between 3-6 m/s occurred, seldom up to 9.5 m/s. Westerly winds were only short (some hours 

up to a day) interrupted. The seal level fluctuated between -4 cm MSL to 15 cm MSL, with a slightly 

rising trend (Figure 7a). Nationwide more or less balanced mean temperatures occurred, the 

mean value of 17.9 °C was 0.4 K above the long-term average. At the German Baltic Sea coast, 

values around the average were reached (-0.4 K at Schleswig, 0.4 K at Rostock, 0.3 K at Arkona 

and 0.3 K at the station Ückermünde). The amount of precipitation was with 86 mm above the 

average of 78 mm (10 %). Along the Baltic Sea coast values varied a lot from west to east (+49 % 

in Schleswig, -42 % in Rostock, 36 % in Arkona to -45 % in Ückermünde). Across Germany as a 

whole, sunshine duration of 207 hours was around the average (206 hours). Values above the 

mean occurred mainly along the Baltic Sea coast and the Alps in the south. 255 hours were 

registered at Arkona (106 %), but the maximum of 274 hours showed again the station 

Fürstenzell.  

 

September was also characterised by this inconsistent weather of the summer. Low-pressure 

cells brought mainly cloudy and rainy conditions which were only short interrupted by sunny late 

summer weather of high-pressure influence. During the month, mainly moderate wind conditions 

continued. Only four days of mean values above 10 m/s were registered (September 7th, 13th-15th). 

At September 13th gale “Sebastian” crossed the Baltic Sea showing maximum gusts of 26.1 m/s 

at Arkona, 33.6 m/s (12 Bft) at MARNET station Darss Sill and 29.5 m/s at MARNET station Arkona 

Basin. Significant wave heights of 3.41 m (Darss Sill) and 4.27 m (Arkona Basin) were measured. 

All instrumentation stayed in operation. The first two thirds of the month the sea level fluctuated 

at Landsort Norra between 9 cm MSL to 24 cm MSL with a slightly rising trend due to the south-

westerly to westerly wind regime (Figure 7). Since September 24th a phase of easterly winds 

begun and the sea level dropped quickly from 11 cm MSL to -14 cm MSL at the end of the month. 
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The monthly mean temperature showed a nationwide average of 12.8 °C, 0.7 K below the long-

term average. At Arkona a monthly temperature of 14.1 °C was reached, which is exactly in line 

with the long-term average. The stations Schleswig and Ückermünde reached as well their 

average and Rostock was slightly too warm (+0.2 K). Rainfall of 66.6 mm was as well at the 

average of 67 mm; at 121 hours of sunshine duration was 18 % below the long-term average 1981-

2010. In the south-west of the Baltic Sea area, precipitation conditions varied a lot from 152 mm 

(+81 %) in the western part at station Schleswig to 47 mm (-23 %) at Rostock, 40 mm (-29 %) at 

Arkona and 37 mm (-24 %) at Ückermünde. In terms of sunshine duration, 121 hours (-18 %) was 

recorded nationwide. At the Baltic Sea coast and northeast Germany values slightly exceeded 

the long-term means. Arkona registered 134 hours (-22 %), but Rostock-Warnemünde had with 

162 hours (+1 %) the national maximum. 

 

The influence of westerly to south-westerly cyclones crossing northern Europe dominated the 

weather situation in October. Only between October 19th-22nd extensive high-pressure cell across 

Scandinavia induced a short phase of easterly winds (Figure 5b). At October 5th gale “Xaver” 

crossed northern Germany, but showed stronger wind strength at western and central Germany. 

For example, the lake Steinhuder Meer close to Hannover registered gusts up to 29.8 m/s (11 Bft) 

whereas at station Arkona blew gusts up to 18.3 m/s (8Bft). A more significant event for the 

southern Baltic occurred to the end of the month, where from October 27th to 30th low-pressures 

“Grischa” and “Herwart” crossed Scandinavia inducing daily means of up to 15.6 m/s and 

maximum gusts 26.9 m/s from west-northwest to northern direction. At October 29th a weak 

storm surge of +1.02 m measured at tide gauge station Warnemünde occurred. Stronger beach 

/cliff abrasion and longshore transport of sediments became apparent. The drop of the mean sea 

level starting end of September continued in the first days to a lowstand of -25 cm MSL at 

Landsort Norra (October 2nd). Afterwards the sea level increased rapidly due to westerly wind 

forcing and a maximum of 26 cm MSL was reached at October 9th comprising an inflow volume of 

188 km3 (Figure 7). Some days of minor fluctuations/stagnation occurred up to October 19th and 

the subsequent easterly winds dropped the sea level again to -8 cm MSL. At the end of the month 

a second inflow to a level of 35 cm MSL occurred. The nationwide average temperature was 1.7 K 

(11.1 °C) too warm compared to the long-term mean of 1981-2010. Stations along the Baltic Sea 

coast recorded monthly temperatures that on average were in a range between 2.2 K at 

Schleswig, 2.3 K at Rostock, 1.6 K at Arkona and 2.1 K at Ückermünde. At 76 mm, precipitation 

was 21 % above the average value of 63 mm; at 97 hours, sunshine duration was 10 % below 

average of 108 hours. Along the Baltic Sea coast precipitation was very intensive and varied 

between +80 % (167 mm) at Schleswig, +136 % (106 mm) at Rostock, +45 % (77 mm) at Arkona 

and +200 % (117 mm) at Ückermünde. The sun shone at Arkona station 95 hours (-19 %) and 190 

hours at the Zugspitze in the Alpes (nationwide maximum).  

  

The generally mild weather continued during November and dominance of westerly to south-

westerly cyclones were two times shortly interrupted by high-pressure “Xandy” (November 6th-

9th) and “Yaprak” (14th-17th). Nine days showed mean values between 10-14 m/s and mainly 

southwest to west winds occurred. Only two days of south-east to eastern direction were 

registered (November 8th, 22nd). The sea level fluctuated between 9-48 cm MSL and showed a 

stepwise rising trend (Figure 7a). The nationwide mean temperature was 0.7 K too mild (5.1 °C), 
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but northerly to north-easterly regions showed higher anomalies than the western and south-

western part of Germany (Saarbrücken 0.1 K). At the German Baltic Sea coast the anomalies of 

mean temperatures increased from west to east (Schleswig +0.8 K, Rostock +1.5 K). Precipitation 

varied between +39 % (111 mm) at Schleswig, -6 % (46 mm) at Rostock, +31 % (63 mm) at Arkona 

and +29 % (58 mm) at Ückermünde. Generally, too wet conditions occurred in Germany with a 

mean of 81 mm (+22 %). The mean sunshine duration of 39 hours was 27 % below the long-term 

mean (1981-2010) and shone from 17 hours at Zinnwald (Erzgebirge mountains) to 104 hours at 

the Zugspitze (Alpes). Arkona registered 38 hours (-30 %). 

 

In December the mild weather conditions continued across Germany by typical influence of 

westerly cyclones crossing northern Europe. Only four days of slight frost during night-time 

occurred in Rostock at the mid of the month, where high-pressure was dominant across central 

Europe (high “Carina”). The wind situation of south-westerly to westerly winds continued (Figure 

4a) and 14 days of means between 10-17.7 m/s were registered at station Arkona. A further 

stepwise sea level rise occurred from 33 cm MSL (December 1st) to 50 cm MSL (December 26th 

(Figure 7a), but discontinuous phases of strong winds induced no classic inflow conditions for 

an overflow of larger volumes of highly saline water at the sills. Generally mild temperatures 

across Germany account to a mean temperature of 2.7 °C, which is 1.5 K above the long-term 

average. At the Baltic Sea coast station Arkona showed a mean temperature of 3.9 °C (+1.6 K) 

and Warnemünde 4.2 °C (+1.9 K). At 77 mm, precipitation was slightly too high compared to the 

average of 72 mm (+6 %). The sunshine duration was nationwide at 28 hours (-30 %). The German 

Baltic Sea coast varied from wet weather at Schleswig (108 mm, +37 %) to dry weather at Arkona 

(41 mm, -5 %) and Ückermünde (28 mm, -32 %). Arkona registered a sunshine duration of 30 

hours (-21 %), but in the south of Germany at the mountain Zugspitze in the Alpes the national 

maximum of 123 hours was measured. The l0west value was registered with 2 hours at Bad 

Marienburg in western Germany   

 

2.3 Summary of Some of the Year’s Significant Parameters 

 

An annual sum of solar radiation at Gdynia cannot be calculated for 2017, because of several 

days of missing data in February and August (personal communication, IMGW). The sunniest 

month was by far May (Table 1). At 63840 J/m², May comes at 10th place in the long-term 

comparison, but still fell well short of the peak value of 80 389 J/m² in July 1994, which 

represents the absolute maximum of the entire series since 1956 (compiled by FEISTEL et al., 

2008). The year’s lowest value was 4854 J/m² in December, lying in 15 place above the long-term 

average of 4366 J/m². All other months showed solar radiation values in the mid-range compared 

to the last 61 years (January 21st; March 44th; April 43th; June 41th; July 48th; Sept 51th; Oct 48th; Nov 

31th). In conclusion, the annual sum 0f the year 2017 should be around the long-term average of 

373 754 J/m². 

 

With a warm sum of air temperature of 159.5 Kd (Table 2), recorded at Warnemünde, the summer 

2017 is ranked in the midrange over the past 70 years on 28th position and far below the previous 

year of 267 Kd on 6th place. The 2017 value is in the range of the long-term average of 153.4 Kd, 

and within the standard deviation, meaning that the year can be classified as a particularly 
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moderate one. Average monthly temperatures from May, June and August were above the long-

term average, whereas the months July and September showed colder temperatures of around 

2/3 of their average. Especially May was far above the standard deviation. April and October 

showed usual temperature pattern around their average.  

With a cold sum of 31.7 Kd in Warnemünde, the winter of 2016/17 is ranked in the upper midrange 

as 15th warmest winter in the long-term data series. Cold periods from 5th-7th January and 8th-14th 

February and the 12th November 2016 led to this cold sum which is far above the long-term 

average 0f 102.4 Kd, but within the standard deviation (Table 2). All winter months from 

November to April showed too high values compared with the average.  

 

Table 1: Monthly averaged weather data at Arkona station (Rügen island, 42 m MSL) from DWD 

(2017). t: air temperature, Δt: air temperature anomaly, h: humidity, s: sunshine duration, r: 

precipitation, Frost: days with minimum temperature below 0 °C, Ice: days with maximum 

temperature below 0 °C. Solar: Solar Radiation in J/m² at Gdynia station, 54°31‘ N, 18°33‘ O, 22 

m MSL from IMGW (2018). Percentages are given with respect to the long-term mean. Maxima 

and minima are shown in bold. 

 

Monat t/°C Δt/K h/% s/% r/% Frost Eis Solar 

Jan 0.8 -0.4 87 138 38 23 3 6368  

Feb 1.8 0.7 84 97 141 15 4 * 

Mrz 4.9 2.0 84 95 155 - - 23887  

Apr 6.4 0.4 80 94 113 1 - 37828  

Mai 11.5 1.1 81 100 51 - - 63840  

Jun 15.3 1.1 82 104 89 - - 58338  

Jul 16.1 -1.0 84 86 189 - - 52282  

Aug 17.6 0.3 81 106 136 - - *  

Sep 14.1 0.0 86 78 71 - - 27286  

Oct 11.6 1.6 87 81 145 - - 15734  

Nov 6.5 1.0 88 70 131 - - 6969  

Dec 3.9 1.6 88 79 95 4 - 4854  

                  * several days of missing data  
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Table 2: Sums of daily mean air temperatures at the weather station Warnemünde. The ‘cold sum‘ 

(CS) is the time integral of air temperatures below the line t = o °C, in Kd, the ‘heat sum’ (HS) is 

the corresponding integral above the line t = 16 °C. For comparison, the corresponding mean 

values 1948–2016 are given. 

 

Month CS 2016/17 Mean Month WS 2017 Mean 

Nov 1.6 2.5 ± 6.1 Apr 0 1.0 ± 2.4 

Dez 0 21.1 ± 27.9 Mai 17.7 5.7 ± 6.9 

Jan 9.9 39.2 ± 39.3 Jun 32.2 23.3 ± 14.6 

Feb 20.2 30.6 ± 37.8 Jul 36.2 57.7 ± 36.0 

Mrz 0 8.2 ± 11.9 Aug 69.3 53.2 ± 31.9 

Apr 0 0 ± 0.2 Sep 3.6 12.2 ± 13.1 

      Okt 0.5 0,4 ± 1.1 

∑ 2016/2017 31.7 101.8 ± 80.0 ∑ 2017 159.5 153.4 ± 69.4 

 

Table 3: Sums of daily mean air temperatures at the weather station Arkona. The ‘cold sum‘ (CS) 

is the time integral of air temperatures below the line t = o °C, in Kd, the ‘heat sum’ (HS) is the 

corresponding integral above the line t = 16 °C.  

 

Monat CS 2016/17 Monat WS 2017 

Nov 0 Apr 0 

Dec 0 Mai 4.6 

Jan 12.5 Jun 11.5 

Feb 14.7 Jul 18.1 

Mrz 0 Aug 49 

Apr 0 Sep 0.1 

    Okt 0 

∑ 2016/2017 27.2 ∑ 2017 83.3 

 

Figures 4 to 7 illustrate the wind conditions at Arkona throughout 2017. Figure 4 illustrates wind 

developments using progressive vector diagrams in which the trajectory develops locally by 

means of the temporal integration of the wind vector. For the 2017 assessment (Figure 4a), the 

long-term climatic wind curve is shown by way of comparison (Figure 4b); it was derived from the 

1951-2002 time series. The 2017 curve (115 000 km eastwards, 30 000 km northwards) roughly 

follows the curve for the climatic mean (52 000 km eastwards, 25 000 km northwards), but 

showed in autumn a dominance of west-southwest to western directions instead the typical 

southwest winds. The trend towards prevailing SW winds that began in 1981 and continues today 

(HAGEN & FEISTEL, 2008) is evident over the year. In January to February, April to May and 

September three longer periods of easterly winds were occurring (Figure 5b). As a result of 

change from easterly to westerly direction of the wind and low intensity (Figure 5a, b), the curve 

for May 2017 shows strong wind vector compensation, which is usual for this time of a year 
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compared with the average for 1951-2002 (Figure 4a, b). According to the wind-rose diagram 

(Figure 6), north-western to south-western directed winds account for about 75 % of the annual 

sum and dominated the course of the year. The mean wind speed of 7.2 m/s (Figure 5a) is slightly 

higher than the long-term average of 7.1 m/s (HAGEN & FEISTEL, 2008). Comparing the east 

component of the wind (positive westwards) with an average of 3.7 m/s (Figure 5b) with the 

climatic mean of 1.7 m/s (HAGEN & FEISTEL, 2008), westerly winds were in 2017 much stronger than 

the mean. For example, figure 4a shows an eastward movement of 115 000 km compared to 52 

000 km for the climatic mean. With an average speed of 0.97 m/s, the north component of the 

wind (positive southwards) shows a slightly higher value to the long-term average of 0.8 m/s.  

In line with expectations, the climatic wind curve in Figure 4b is more smooth than the curves for 

individual years. It consists of a winter phase with a southwesterly wind that ends in May and 

picks up again slowly in September. In contrast, the summer phase has no meridional 

component, and therefore runs parallel to the x-axis. The most striking feature is the small peak 

that indicates the wind veering north and east, and marks the changeover from winter to summer. 

It occurs around 12 May and belongs to the phase known as the ‘ice saints’. The unusually regular 

occurrence of this northeasterly wind with a return to a cold spell in Germany over many years 

has long been known, and can be explained physically by the position of the sun and land-sea 

distribution (BEZOLD, 1883). 
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Fig. 4: Progressive vector diagram of the wind velocity at the weather station Arkona, distance in 

1000 km, positive in northerly and easterly directions. The first day of each month is encircled. 

a) the year 2016 (from data of DWD, 2018) b) long-term average. 
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Fig. 5: Wind measurements at the weather station Arkona (from data of DWD, 2018). a) Daily 

means and maximum gusts of wind speed, in m/s, the dashed black line depicts the annual 

average of 7.2 m/s. b) Daily means of the eastern component (westerly wind positive), the 

dashed line depicts the annual average of 3.7 m/s. The line in bold is filtered with a 10-days 

exponential memory.  

 

Wind development in the course of the year shows a typical distribution of stronger winds, as 

daily averages of more than 10 m/s (>5 Bft) were often exceeded in the winter half year (Figure 

5a). On 4th May a storm from north-eastern direction (low-pressure “Victor” crossing central 

Europe and high pressure “Sonja” across Scandinavia) occurred in the Baltic Sea as strongest 

wind event of the year, showing the highest daily average of 18.1 m/s and gusts up to 26.3 m/s 
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(Figure 5a). Other storm events occurred from western-south-western direction at Christmas time 

from 23rd-24th December (low pressures “Charly” and “Diethelm” across Scandinavia) with daily 

means of 17.2-17.7 m/s and gusts up to 29.2 m/s as well as on October 28th (low pressure 

“Grischa”, daily mean of 15.6 m/s, gusts 26.3 m/s). The annual mean wind speed of 7.2 m/s is 

much higher than 2016’s 6.5 m/s (NAUMANN et al., 2017). Previous years showed following annual 

mean values of 7.2 m/s (2015), 6.7 m/s (2014), 7.0 m/s (2013) and 7.1 m/s in the year 2012 

(NAUSCH et al., 2013, 2014, 2015, 2016). Maximum wind speeds in excess of 20 m/s (>8 Bft) were 

recorded as hourly means only at December 24th (21.9 m/s), December 23rd (21.7 m/s) and May 

4th (21.3 m/s). In 2016 a similar maximum value of 21.3 m/s was reached on 27th December 

(NAUMANN et al., 2017). These values falling well short of previous peak values in hourly means 

of 30 m/s in 2000; 26.6 m/s in 2005; and 25.9 m/s (hurricane “Xaver”) in December 2013. This 

is clearly illustrated by the wind-rose diagram (Figure 6) in which orange and red colour 

signatures indicating values greater than 20 m/s. They did only slightly occur in 2017. 

 

 
Fig. 6: Wind measurements at the weather station Arkona (from data of DWD, 2018) as wind-rose 

plot. Distribution of wind direction and strength based on hourly means of the year 2017. 

 

The Swedish tide gauge station at Landsort Norra provides a good description of the general 

water level in the Baltic Sea (Figure 7a). In contrast to previous years, after 2004 a new gauge 

went into operation at Landsort Norra (58°46’N, 17°52’E). Its predecessor at Landsort (58°45’N, 

17°52’E) was decommissioned in September 2006 because its location in the lagoon meant that 

at low tide its connection with the open sea was threatened by post-glacial rebound (FEISTEL et 

al., 2008). Both gauges were operated in parallel for more than two years, and exhibited almost 

identical averages with natural deviations on short time scales (waves, seiches). Comparison of 

the 8760 hourly readings from Landsort (L) and Landsort Norra (LN) in 2005 revealed a correlation 
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coefficient of 98.88 % and a linear regression relation L + 500 cm = 0.99815  LN + 0.898 cm with 

a root mean square deviation (rms) of 3.0 cm and a maximum of 26 cm. 

In the course of 2017, the Baltic Sea experienced two inflow phases with total volumes estimated 

between 210 km³ and 188 km³. Rapid increases in sea level that are usually only caused by an 

inflow of North Sea water through the Sound and Belts are of special interest for the ecological 

conditions of the deep-water in the Baltic Sea. Such rapid increases are produced by storms from 

westerly to north-westerly directions, as the clear correlation between the sea level at Landsort 

Norra and the filtered wind curves illustrates (Figures 5b, 7b). Filtering is performed according to 

the following formula:  

 
in which the decay time of 10 days describes the low-pass effect of the Sound and Belts (well-

documented both theoretically and through observations) in relation to fluctuations of the sea 

level at Landsort Norra in comparison with those in the Kattegat (LASS & MATTHÄUS, 2008; FEISTEL 

et al., 2008).  

 

Early in the year on January 4th, the gauge at Landsort Norra recorded the highstand of the year 

of -65 cm MSL (Figure 7a) as a result of preceding long lasting strong westerly winds. A system 

shift to weak-moderate easterly winds caused a sea level drop to -46.5 cm (February 13th). 

Afterwards a rapid sea level rise to 15.6 cm MSL (March 3rd) occurred due to prevailing westerly 

winds and a resulting total volume of 210 km³ was calculated. With the empirical approximation 

formula:  

 

 𝛥𝑉/𝑘𝑚³ = 3.8 × 𝛥𝐿/𝑐𝑚 − 1.3 × 𝛥𝑡/𝑑 

 

(NAUSCH et al., 2002; FEISTEL et al., 2008), it is possible using the values of the difference in gauge 

level  in cm and the inflow duration  in days to estimate the inflow volume . For this 

event a salt transport of 1.3 Gt and highly saline volume transport of 68 km³ was calculated with 

data of the MARNET stations Darss Sill and Arkona Basin by MOHRHOLZ (submitted). The bottom 

salinity at the Darss Sill only for a short time exceeded 17 g/kg and the stratification was too high 

to classify this event as a Major Baltic Inflow described in NAUMANN et al. (submitted). Minor 

fluctuations between 15 cm and -15 cm MSL occurred up to May, before a longer period of easterly 

winds lowered the sea level to -21.6 cm MSL (May 19th). Afterwards events of westerly winds filled 

the Baltic Sea slowly and stepwise to 27 cm MSL (June 27th). Minor fluctuations between 0-20 cm 

MSL occurred again up to mid of September, before the sea level dropped to -25.4 cm MSL 

(October 2nd). Up to October 9th the sea level rose quickly to 26.4 cm MSL comprising a total 

inflow volume of 188 km³. Up to end of the year the sea level increased stepwise to 48.5 cm MSL 

(December 16th) by dominating westerly to south-westerly winds (Fig. 4a, 7a).  

L t V
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Fig. 7: a) Sea level at Landsort as a measure of the Baltic Sea fill factor (from data of SMHI, 2018a). 

b) Strength of the southeastern component of the wind vector (northwesterly wind positive) at 

the weather station Arkona (from data of DWD, 2018). The bold curve appeared by filtering with 

an exponential 10-days memory and the dashed line depicts the annual average of 1.9 m/s. 

 

Compared to previous years of high inflow activity of four MBI’s and various smaller events 

(NAUMANN et al., submitted) the year 2017 is characterized weak inflow year. This is visualized in 

figure 8 by the accumulated inflow volume through the Öresund (SMHI, 2014-2017), where the 

inflow curve of 2017 runs below the minimum of the reference period 1977-2016 from April up to 

the end of the year. 
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Fig. 8:  Accumulated inflow (volume transport) through the Öresund during 2017 in comparison 

to previous years 2014-2016 (SMHI 2018b). 
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3. Water Exchange through the Strits / Observations at the Monitoring Platform 

“Darss Sill” 

 

The monitoring station at the Darss Sill supplied nearly complete records during the year 2017, 

except for a few occasional data gaps due to hardware and battery problems. The largest data 

gap occurred in January and February, when sensor damage resulted in a complete loss of oxygen 

data in 19 m depth until replacement of the sensors on 27 February. Battery failure led to a gap 

in the CTD data at 5 m depth between 19 January and 01 March.  And finally, a small gap in the 

CTD data between 27 February and 04 March occurred due to a hardware incompatibility problem 

that could, however, quickly be repaired. The ADCP provided full data records throughout the 

observation period. As usual, in addition to the automatic oxygen readings taken at the 

observation mast, discrete comparative measurements of oxygen concentrations were taken at 

the depths of the station’s sensors using the Winkler method (cf. GRASSHOFF et al., 1983) during 

the regular maintenance cruises. Oxygen readings were corrected accordingly. 

 

3.1 Statistical Evaluation 

 

The bulk parameters determining the water mass properties at Darss Sill were determined from 

a statistical analysis based on the temperature and salinity time series at different depths. The 

small data gap between 27 February and 04 March at the 7-m depth level (see above) was filled 

by linear interpolation. Sensitivity studies showed that this had no significant effect on the 

statistics.  

 

While significantly colder than record-setting previous years, the yearly mean temperatures 

(Table 4, Figure 9) for the year 2017 were clearly above average. Annual mean surface-layer 

temperatures are found on rank 6 of the entire record since 1992 (i.e. in the upper quartile), which 

is consistent with the climatic characterization of 2017 as a warm year in chapter 2. The standard 

deviation of the surface-layer temperatures, also shown in Table 4 and Figure 9, largely mirror 

the annual cycle. The values for 2017 are slightly smaller compared to the previous year, and 

close to the multi-year average. It is likely that the only moderately high surface temperatures in 

summer (see below) and the relatively mild winter temperatures resulted in an overall flat annual 

cycle, which is also reflected in the standard deviation. This is consistent with the atmospheric 

data discussed in section 2.3, which revealed a mild summer and a winter that was significantly 

warmer than the long-term average.  

 

The mean salinities and their standard deviations at the station are shown in Table 4 and Figure 

10. The values of the lowermost two sensors reflect the near-bottom variability in salinity, and 

are therefore a sensitive measure for the overall inflow activity. Different from the previous year, 

and the year 2014, both characterized by strong inflow activity, the year 2017 shows only small 

mean salinities and weak near-bottom salinity fluctuations. Only 4 of the previous years since 

1992 exhibited a smaller mean value in 17 depth, and only 2 years in 19 m depth. Similarly, the 

standard deviations at these depth levels ranked among the 5-6 smallest so far observed, which 
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is in line with the small water level fluctuations (and thus weak inflow activity) reported in section 

2.  The year 2017 was thus a year with particularly small inflow activity. 

 

Table 4: Annual mean values and standard deviations of temperature (T) and salinity (S) at the 

Darss Sill. Maxima in bold face. 

 

Year 

7 m Depth 17 m Depth 19 m Depth 

T S T S T S 

°C g/kg °C g/kg °C g/kg 

1992 9 , 4 1  ±  5 , 4 6  9 , 5 8  ±  1 , 5 2  9 , 0 1  ±  5 , 0 4  1 1 , 0 1  ±  2 , 2 7  8 , 9 0  ±  4 , 9 1  1 1 , 7 7  ±  2 , 6 3  

1993 8 , 0 5  ±  4 , 6 6  9 , 5 8  ±  2 , 3 2  7 , 7 0  ±  4 , 3 2  1 1 , 8 8  ±  3 , 1 4  7 , 7 1  ±  4 , 2 7  1 3 , 3 6  ±  3 , 0 8  

1994 8 , 9 5  ±  5 , 7 6  9 , 5 5  ±  2 , 0 1  7 , 9 4  ±  4 , 7 9  1 3 , 0 5  ±  3 , 4 8  7 , 8 7  ±  4 , 6 4  1 4 , 1 6  ±  3 , 3 6  

1995 9 , 0 1  ±  5 , 5 7  9 , 2 1  ±  1 , 1 5  8 , 5 0  ±  4 , 7 8  1 0 , 7 1  ±  2 , 2 7   –    –   

1996 7 , 4 4  ±  5 , 4 4  8 , 9 3  ±  1 , 8 5  6 , 8 6  ±  5 , 0 6  1 3 , 0 0  ±  3 , 2 8  6 , 9 0  ±  5 , 0 1  1 4 , 5 0  ±  3 , 1 4  

1997 9 , 3 9  ±  6 , 2 3  9 , 0 5  ±  1 , 7 8   –   1 2 , 9 0  ±  2 , 9 6  8 , 2 0  ±  4 , 7 3  1 3 , 8 7  ±  3 , 2 6  

1998 8 , 6 1  ±  4 , 6 3  9 , 1 4  ±  1 , 9 3  7 , 9 9  ±  4 , 0 7  1 1 , 9 0  ±  3 , 0 1  8 , 1 0  ±  3 , 8 3  1 2 , 8 0  ±  3 , 2 2  

1999 8 , 8 3  ±  5 , 2 8  8 , 5 0  ±  1 , 5 2  7 , 9 6  ±  4 , 3 9  1 2 , 0 8  ±  3 , 9 7  7 , 7 2  ±  4 , 2 2  1 3 , 6 4  ±  4 , 3 9  

2000 9 , 2 1  ±  4 , 2 7  9 , 4 0  ±  1 , 3 3  8 , 4 9  ±  3 , 8 2  1 1 , 8 7  ±  2 , 5 6  8 , 4 4  ±  3 , 8 1  1 3 , 1 6  ±  2 , 5 8  

2001 9 , 0 6  ±  5 , 1 6  8 , 6 2  ±  1 , 2 9  8 , 2 7  ±  4 , 0 6  1 2 , 1 4  ±  3 , 1 0  8 , 2 2  ±  3 , 8 6  1 3 , 4 6  ±  3 , 0 6  

2002 9 , 7 2  ±  5 , 6 9  8 , 9 3  ±  1 , 4 4  9 , 0 6  ±  5 , 0 8  1 1 , 7 6  ±  3 , 1 2  8 , 8 9  ±  5 , 0 4  1 3 , 1 1  ±  3 , 0 5  

2003 9 , 2 7  ±  5 , 8 4  9 , 2 1  ±  2 , 0 0  7 , 4 6  ±  4 , 9 6  1 4 , 7 1  ±  3 , 8 0  8 , 7 2  ±  5 , 2 0  1 5 , 7 4  ±  3 , 2 7  

2004 8 , 9 5  ±  5 , 0 5  9 , 1 7  ±  1 , 5 0  8 , 3 6  ±  4 , 5 2  1 2 , 1 3  ±  2 , 9 2  8 , 3 7  ±  4 , 4 4  1 2 , 9 0  ±  2 , 9 7  

2005 9 , 1 3  ±  5 , 0 1  9 , 2 0  ±  1 , 5 9  8 , 6 0  ±  4 , 4 9  1 2 , 0 6  ±  3 , 0 6  8 , 6 5  ±  4 , 5 0  1 3 , 2 1 ±  3 , 3 1  

2006 9 , 4 7  ±  6 , 3 4  8 , 9 9  ±  1 , 5 4  8 , 4 0  ±  5 , 0 6  1 4 , 2 6  ±  3 , 9 2  9 , 4 2  ±  4 , 7 1  1 6 , 0 5  ±  3 , 7 5  

2007 9 , 9 9  ±  4 , 3 9  9 , 3 0  ±  1 , 2 8  9 , 6 6  ±  4 , 1 0  1 0 , 9 4  ±  1 , 9 7  9 , 6 3  ±  4 , 0 8  1 1 , 3 9  ±  2 , 0 0  

2008 9 , 8 5  ±  5 , 0 0  9 , 5 3  ±  1 , 7 4  9 , 3 0  ±  4 , 6 0  -   9 , 1 9  ±  4 , 4 8  -  

2009 9 , 6 5  ± 5 , 4 3  9 , 3 9  ± 1 , 6 7  9 , 3 8  ± 5 , 0 9      1 1 , 8 2  ± 2 , 4 7  9 , 3 5  ± 5 , 0 4  1 2 , 7 7  ± 2 , 5 2  

2010 8 , 1 6  ±  5 , 9 8  8 , 6 1  ±  1 , 5 8  7 , 1 4  ±  4 , 8 2  1 1 , 4 8  ±  3 , 2 1  6 , 9 2  ±  4 , 5 6  1 3 , 2 0  ±  3 , 3 1  

2011 8 , 4 6  ±  5 , 6 2  -  7 , 7 6  ±  5 , 1 8  -  7 , 6 9  ±  5 , 1 7  -  

2012 -  -  -  -  -  -  

2013 -  -  -  -  -  -  

2014 1 0 , 5 8  ±  5 , 5 8  9 , 7 1  ±  2 , 2 7  1 0 , 0 1  ±  4 , 9 6  1 3 , 7 5  ±  3 , 5 3  9 , 9 9  ±  4 , 9 0  1 4 , 9 1  ±  3 , 4 0  

2015 -  -  -  -  -  -  

2016 1 0 , 2 3  ±  5 , 6 3  9 , 6 9  ±  1 , 9 8  9 , 2 7  ±  4 , 5 9  1 4 , 0 7  ±  3 , 5 3  9 , 1 1  ±  4 , 4 3  1 5 , 5 6  ±  3 , 4 5  

2017 9 , 6 7  ±  5 , 0 5  9 , 4 0  ±  1 , 5 8  9 , 2 3  ±  4 , 5 4  1 1 , 6 5  ±  2 , 5 0  9 , 2 0  ±  4 , 4 5  1 2 , 3 9  ±  2 , 6 1  
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Table 5: Amplitude (K) and phase (converted into months) of the yearly cycle of temperature 

measured at the Darss Sill in different depths. Phase corresponds to the time lag between 

temperature maximum in summer and the end of the year. Maxima in bold face. 

 

Year 

7 m Depth 17 m Depth 19 m Depth 
Amplitude Phase Amplitude Phase Amplitude Phase 

K Month K Month K Month 

1992 7,43 4,65 6,84 4,44 6,66 4,37 

1993 6,48 4,79 5,88 4,54 5,84 4,41 

1994 7,87 4,42 6,55 4,06 6,32 4,00 

1995 7,46 4,36 6,36 4,12 – – 

1996 7,54 4,17 6,97 3,89 6,96 3,85 

1997 8,60 4,83 – – 6,42 3,95 

1998 6,39 4,79 5,52 4,46 – – 

1999 7,19 4,52 5,93 4,00 5,70 3,83 

2000 5,72 4,50 5,02 4,11 5,09 4,01 

2001 6,96 4,46 5,35 4,01 5,11 3,94 

2002 7,87 4,53 6,91 4,32 6,80 4,27 

2003 8,09 4,56 7,06 4,30 7,24 4,19 

2004 7,11 4,48 6,01 4,21 5,90 4,18 

2005 6,94 4,40 6,23 4,03 6,21 3,93 

2006 8,92 4,32 7,02 3,80 6,75 3,72 

2007 6,01 4,69 5,53 4,40 5,51 4,36 

2008 6,84 4,60 6,23 4,31 6,08 4,24 

2009 7,55     4,57 7,09     4,37 7,03 4,32 

2010 8,20     4,52 6,54     4,20 6,19 4,08 

2011 7,70     4,64 6,98     4,21 7,04 4,14 

2012 – – – – – – 

2013 – – – – – – 

2014 7,72 4,43 6,86 4,17 6,77 4,13 

2015 – – – – – – 

2016 7,79 4.65 6,33 4,33 6,11 4,23 

2017 7,00 4.56 6,20 4,31 6,15 4,28 

 

The amplitude and phase shift of the annual cycle were determined from a Fourier analysis of the 

temperature time series at 7 m depth (surface layer) and at the two lowermost sensors (17 m and 

19 m depth). This method finds the optimal fit of a single Fourier mode (a sinusoidal function) to 

the data, from which amplitude and phase can easily be inferred as the characteristic parameters 

of the annual cycle. The results are compiled in Table 5.   
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Similar to the standard variations discussed above, Table 5 shows that also the amplitudes of 

the annual cycle at different depths are somewhat below the long-term average, and far below 

the record-setting years (for example, the year 2006) that were characterized by particularly 

warm summers and cold winters. Interesting is the pronounced phase lag 0f approximately 

0.25 – 0.3 months between the surface and near-bottom temperatures that is also evident from 

Table 5. As density stratification usually isolates the lower layers from direct atmospheric 

forcing, this phase lag mirrors the delayed arrival of surface waters from the Kattegat that 

propagate as dense bottom currents through the Great Belt before they arrive, with the above-

mentioned delay, at the Darss Sill.  

 

 

Fig. 9: Mean and standard deviation of water temperature taken over one year in the surface layer 

(7 m, white bars) and the bottom layer (17 m, grey bars and 19, black bars) at the Darss Sill 
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Fig. 10: Mean and standard deviation of salinity taken over one year in the surface layer (7 m, 

white bars) and the bottom layer (17 m, grey bars and 19, black bars) at the Darss Sill. 

 

3.2 Warming Phase with Moderate Inflow in February 

 

Figure 11 shows the development of water temperature and salinity in 2017 in the surface layer 

(7 m depth) and the near-bottom region (19 m depth). As in the previous years, the currents 

observed by the bottom-mounted ADCP in the surface and bottom layers were integrated in time, 

respectively, in order to emphasize the low-frequency baroclinic (depth-variable) component, 

plotted in Figure 12 as a ‘progressive vector diagram’ (pseudo-trajectory). This integrated view of 

the velocity data filters short-term fluctuations, and allows long-term phenomena such as inflow 

and outflow events to be identified more clearly. According to this definition, the current velocity 

corresponds to the slope of the curves shown in Figure 12, using the convention that positive 

slopes reflect inflow events.  

 

The year 2017 started with high salinity concentrations that can be traced back to a 5-day 

barotropic inflow pulse observed in the last week of December 2016 (see NAUMANN et al., 2017). 

During a period of low wind speeds (Figure 5a) and strong pressure-driven outflow (Figure 12) in 

the second half of January, water levels gradually relaxed back to near-neutral levels until end of 

the month (Figure 7a), and bottom salinities decreased below 10 g/kg (Figure 11). The water 

column remained stratified throughout this period until homogenized by strong easterly winds 

starting with the beginning of February. These winds persisted until mid of February, and 

reinforced the pressure-driven outflow until water levels had reached a value of 40 cm below zero 

(the minimum value for this year). This situation formed the starting point for an inflow that, 

although only of moderate strength, formed the most important event of the year 2017.  
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With the turning of the winds to south-westerly directions on 15 February, and daily averaged 

wind speeds increasing up to 15 m/s (with gust above 25 m/s) at the Arkona station (Figure 5a), 

strong barotropic inflow (Figure 12) was observed during the following two weeks, causing a 

steady increase of the water levels at Landsort (Figure 7a). After the collapse of the winds in the 

first week of March, water levels had reached slightly positive values around 10 cm, and 

approximately 210 m3 of salty water from the Kattegat had entered the Western Baltic Sea (see 

chapter 2). During the final stage of this inflow event, the intruding waters were characterized by 

bottom salinities slightly above 16 g/kg, temperatures around 2.8 °C, and oxygen levels near the 

saturation point (Figure 13). Waters with higher salinities might have entered via the second 

inflow pathway through the Öresund, where inflow activity was observed as well (Figure 8). It is 

worth noting that during this event, on 20 February, also the lowest water temperatures of the 

year (2.2 and 2.5 °C hourly and daily mean values, respectively) were observed in the surface 

layer during a winter storm with maximum hourly wind speeds exceeding 15 m/s. 

 

The following weeks until approximately end of April were characterized by sporadic weak inflow 

pulses, resulting in highly variable salinities (Figure 11) and water levels that fluctuated slightly 

above the neutral level (Figure 7b). The current measurements (Figure 12) suggest a baroclinic 

tendency with weak net outflow at the surface and weak inflow near the bottom. The imprint of 

these inflow pulses can also be identified in the integrated current time series from the Öresund 

(Figure 8). A period of easterly winds in the first half of May forced a persistent outflow during 

which bottom salinities dropped towards the values in the surface layer, indicating a well-mixed 

water column (Figure 11).  
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Fig. 11: Water temperature (above) and salinity (below) measured in the surface layer and the 

near bottom layer at Darss Sill in 2017 

 

At the end of this outflow period, the water levels at Landsort reached a value -0.2 m, which 

formed the minimum of the spring and summer period (Figure 7a). The oxygen data (Figure 13) 

show an unusually strong indication of excess production during the spring bloom end of March, 

paralleled by a drop in the near-bottom oxygen concentrations. The latter is likely related to the 

sinking of organic material, causing a strong oxygen demand due to remineralization that was 

only partly compensated by the sporadic small-scale inflows mentioned above.  
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In the following 6 weeks between mid of May and end of June, winds fluctuated around westerly 

directions, and current measurements indicate a period of overall weak barotropic inflow, only 

occasionally interrupted by short outflow episodes (Figure 12). At the end of this period, water 

levels at Landsort had increased by approximately 40 cm to values around 20 cm above the 

neutral level (Figure 7a). Although weak, the inflow activity during this period prevented oxygen 

levels from falling below 70% saturation. As a side effect of the inflow of dense saline waters, 

the water column quickly restratified around 15 May at the end of the outflow period, and the 

surface layer decoupled from the deeper layers. Combined with low winds and strong solar 

heating, this resulted in a rapid heating response of the surface layer with temperatures 

increasing by more than 7 °C in a timespan of only 2 weeks. It is interesting to note that the near-

bottom region showed a similarly strong but delayed temperature increase approximately a 

month later, when a front of warm and salty waters passed the station during one of the sporadic 

inflow events described above.  This is one example illustrating the type of events that resulted 

in the overall delayed annual cycle in the deeper layer, as pointed out already in the context of 

the Fourier analysis in section 3.1 above. 

 

The following summer months until approximately mid of September were characterized by 

slightly positive and nearly stagnant water levels, except for a short outflow period in the second 

half of July (Figure 7a). The months of August and September showed an overall weak baroclinic 

inflow tendency, evident from the spreading of the integrated velocities in the near-surface and 

near-bottom regions, respectively (Figure 12). Distinct examples of such baroclinic inflow periods 

in the near-bottom region can be identified from Figure 12 at the end of July and during the second 

half of August. Similar to other years, these events were generally characterized by low oxygen 

levels (Figure 13), which can be explained by enhanced (mostly sedimentary) respiration rates in 

the shallow Danish straits during summer conditions. While strong baroclinic inflows are known 

for their potential to import significant amounts of oxic waters, none of the summer inflows in 

2017 was strong enough to show this effect. It is therefore not surprising that the lowest oxygen 

concentrations of the year were observed during this period: 28% of the saturation value on 30 

July during the weak baroclinic inflow mentioned above, and 27% on 13 August (daily means). As 

shown below, the effect of the low-oxygen waters from these baroclinic inflow pulses can also 

be identified in the deep-water properties of the Arkona Basin.  

 

An interesting anomaly in the T-S properties was observed during a 5-day reversal of the winds 

from westerly to easterly directions between 19 and 25 July. Already a day after the winds turned 

to easterly directions, the hourly mixed-layer temperatures dropped by 6 °C down to 

approximately 10 °C (this effect is somewhat less pronounced in the daily averaged values shown 

in Figure 11). It is likely that during this period, the Darss Sill station was affected by one of the 

cold upwelling filaments generated in the upwelling region near the island of Hiddensee during 

periods of westerly winds (hence northward Ekman transport).  
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Finally, in view of the fact that the year 2017 was characterized as a comparatively warm year 

(see chapter 2), it is surprising to see that maximum daily mean temperatures in the surface layer 

were reached late (31 August) compared to other years, and did not exceed the maximum of 18.5 

°C (daily mean).  The unusually cold month of July might provide an explanation for this.    

 

 
Fig. 12: East component of the progressive vector diagrams of the current in 3 m depth (solid 

line), the vertical averaged current (thick line) and the current in 17 m depth (dashed line) at the 

Darss Sill in 2017 

 

3.3 Cooling Phase with Moderate Inflow Event in October 

 

The second important inflow event of the year was pre-conditioned by an outflow period (Figure 

12) forced by strong easterly winds in the second half of September (Figure 7b). As winds were 

weaker and of shorter duration compared to the outflow period in the first half of February, water 

levels only dropped down to approximately 20 cm below zero (vs. 40 cm in February). Winds 

turned to south-westerly directions on 02 October, increasing to above 10 m/s (daily mean at 

Darss Sill) already on the following day, when the ADCP data indicate the beginning of a 

barotropic inflow (Figure 12) that lasted until mid of the month. With decreasing south-easterly 

winds, the inflow stopped on 16 October at a water level of slightly above 20 cm (Figure 7a), 

corresponding to a net volume of approximately 190 km3 that entered the Baltic Sea during this 

event (see chapter 2 for a discussion of this estimate).  Bottom salinities during this inflow event 

reached 16 g/kg at temperatures of 13-14 °C (Figure 11) and oxygen levels only slightly below the 

saturation threshold (Figure 13). The current measurements in the Great Belt show clear 

indications for inflow also along this alternative pathway, which is usually associated with higher 

salinities compared to the Darss Sill (Figure 8). It is interesting to note (Figure 11) that this inflow 

event interrupted the ongoing cooling phase by inducing a sharp temperature increase triggered 

by the arrival of the warmer inflow waters.  
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Fig. 13: Oxygen saturation measured in the surface and bottom layer at the Darss Sill in 2017 

 

The following weeks until approximately mid of November were characterized by two smaller 

inflow events, interrupted by short outflow periods, that resulted in an overall steady increase of 

the water level at Landsort up to approximately 40 cm above the neutral level (Figure 7a), 

consistent with the mostly westerly winds during this phase. As a result of the weak but 

persistent inflow activity, near-bottom oxygen concentrations remained close to the surface 

values, and not far below the saturation level (Figure 13). In the following period until end of the 

year, water levels at Landsort fluctuated around 40 cm (Figure 7a), whereas the current 

measurements indicate weak outflow (Figure 12). This suggests an approximate balance between 

freshwater runoff and outflow during the final weeks of the year.  

Overall, the current measurements at Darss Sill confirm that 2017 was year with particularly small 

barotropic and baroclinic inflow activity. The spreading of the time-integrated velocities at the 

surface and bottom layer, which can be interpreted as a measure for the baroclinic inflow activity, 

was approximately 1000 km in 2017, compared to 1800 km in the previous year (Figure 12). 

Similarly, the vertical average of the time-integrated velocities measures to which extent the 

overall outflow due to river run-off and precipitation is compensated by barotropic inflows. In 

2017, the time integral of vertical averaged outflow velocity was more than 1000 km (Figure 12), 

whereas in 2016, only 400 km were observed. This indicates a much stronger overall 

compensation of the outflow due to run-off by barotropic inflows in 2016. 



36 

 

4. Observations at the Buoy “Arkona Basin” 

 

The dynamics of saline bottom currents in the Arkona Basin was investigated in detail some years 

ago in the framework of the projects “QuantAS-Nat” and “QuantAS-Off” (Quantification of water 

mass transformation in the Arkona Sea), funded by the German Research Foundation (DFG) and 

the Federal Ministry for the Environment (BMU). Data from these projects included the first 

detailed and synoptic turbulence and velocity transects across bottom gravity currents passing 

through a channel north of Kriegers Flak during a number of medium-strength inflow events 

(ARNEBORG et al., 2007; UMLAUF et al., 2007; SELLSCHOPP et al., 2006). In a pilot study, BURCHARD et 

al. (2009) investigated the pathways of these haline intrusions into the Arkona Basin in 2003 

and 2004. They identified the channels north of Kriegers Flak and the Bornholm Channel as zones 

of greatly intensified mixing, and validated their model results using data from the MARNET 

monitoring network as published in this report series every year. The theoretical analysis of these 

data revealed a surprisingly strong influence of Earth’s rotation on turbulent entrainment in 

dense bottom currents, leading to the development of new theoretical model that take rotation 

into account (UMLAUF & ARNEBORG, 2009a, b, UMLAUF et al., 2010). The correct representation of 

the turbulent entrainment rates in numerical models of the Baltic Sea is known to be essential 

to predict the final interleaving depth and ecosystem impact of the inflowing bottom gravity 

currents in the deeper basins of the central Baltic Sea.  Recently, a comparison of MARNET data 

with the results of new generation of three-dimensional models with adaptive, topography-

following numerical grids has shown that the model was able to provide an excellent 

representation of the processes in the Western Baltic Sea also during MBIs, taking the record-

setting MBI 2014 as an example (Gräwe et al., 2015). 

 

The Arkona Basin monitoring station described in this chapter is located almost 20 nm north-

east of Arkona in 46 m water depth. In 2017, the station worked without any technical problems 

and thus provided complete records of all relevant parameters. As described in chapter 3, the 

optode-based oxygen measurements at the monitoring station were corrected with the help of 

the Winkler method, using water samples collected and analyzed during the regular MARNET 

maintenance cruises. Figure 14 shows the time series of water temperature and salinity at depths 

of 7 m and 40 m, representing the surface and bottom layer properties. Occasionally, also data 

from the uppermost (2m depth) and the deepest sensor (43 m depth), both not shown in the 

figure, will be discussed. Corresponding oxygen concentrations, plotted as saturation values as 

in the previous chapter, are shown in Figure 15.  

 

Similar to the measurements at the Darss Sill, also at station AB the first weeks of the year were 

characterized by a cooling phase that induced gradually decreasing temperatures in the surface 

layer. The smallest daily mean temperatures of the year, approximately 2.0 °C, were reached on 

08 February (Figure 14), approximately 0.5 °C colder than the minimum temperatures measured 

12 days later at the Darss Sill. While the surface temperatures in the Arkona Basin are largely 

determined by the local atmospheric fluxes, those at the Darss Sill are more strongly affected by 

lateral advection, which may explain the observed differences.  
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Fig. 14: Water temperature (above) and salinity (below) measured in the surface layer and near 

bottom layer at the station AB in the Arkona Basin in 2017 

 

During this period, the water mass properties in the bottom layer were determined by the 

aftermath of a small inflow event that had occurred in the last week of December 2016 (see 

previous chapter). Nearly stagnant temperatures around 6 °C suggest that the near-bottom 

region was decoupled from direct atmospheric cooling, whereas the slowly decaying salinities 

indicate the draining of the bottom pool of salty and dense inflow waters through the Bornholm 
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Channel (Figure 14).  The oxygen demand due to respiration is usually small during this time of 

the year due to low water temperatures, and oxygen concentrations therefore did not fall below 

approximately 80% of the saturation threshold (Figure 15).     

       

On 19 February, 4 days after the intermediate-strength inflow described in chapter 3 had been 

detected at the Darss Sill station, near-bottom salinities in the Arkona Basin exhibited a rapid 

drop down to values below 9 g/kg, followed by a quick relaxation and a further increase to values 

above 18 g/kg (Figure 14). During this event, also the bottom temperatures dropped, but 

remained low around 3.5 °C. This peculiar evolution of the near-bottom water mass properties 

can be understood from a combination of reversible downwelling on the southern slope of the 

Arkona Basin, and the arrival of the cold and salt inflow waters from the Darss Sill. Around 18 

February, winds had turned to south-westerly directions, and gradually increased in strength 

until they reached hourly mean values of 17 m/s on 20 February, almost exactly from East (the 

daily mean wind speed for this day was 14 m/s).  The Ekman transport, directed southward under 

these conditions, resulted in a depression of the halocline that was strong enough to replace the 

salty bottom pool with the relatively fresh and cool surface-layer waters at the AB station. With 

decaying winds on the late afternoon of 21 February the halocline relaxed back to its original 

position, approximately at the same time when the salty and cold inflow waters from the Darss 

Sill arrived at the station: near-bottom salinities strongly increased but temperatures stayed low 

(Figure 14). As oxygen concentrations were high throughout the water column already before this 

event, the inflow water did not leave a significant imprint on the deep-water oxygen budget 

(Figure 15).  

 

As described in chapter 3, the following weeks until approximately mid of May were characterized 

by smaller inflow pulses at the Darss Sill, with high oxygen concentrations and gradually 

increasing temperatures, followed by a two-week outflow period. Figures 14 and 15 show that 

these pulses were not sufficient to completely maintain constant salinity and oxygen levels in 

the bottom layer. They did, however, prevent salinities from sinking below 13 g/kg and oxygen 

levels below 70% saturation. The gradual increase in temperature during this period mirrors the 

heat supply by these inflow pulses that were characterized by steadily increasing temperatures 

at the Darss Sill (Figure 11). The clearest signal of the outflow period in the first half of May (Figure 

12) can be identified in the quickly decaying near-bottom salinities.  

 

Also in the following summer months, bottom salinities remained stable between 12 and 14 g/kg 

as a result of a series of smaller inflows. The arrival of these inflow pulses is most clearly seen in 

a stepwise increase in the near-bottom temperatures. One distinct example is the strong 

increase in near-bottom temperatures in the last week of June (Figure 14) that can be traced back 

to the arrival of warm inflow waters passing the Darss Sill after 13 June (as evident from the 

temperature jump in Figure 11). The near-bottom oxygen concentrations generally remained 

above 60% of the saturation value during this period.  
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Fig. 15: Oxygen saturation measured in the surface and bottom layer at the station AB in the 

Arkona Basin in 2017 

 

The situation changed qualitatively starting from the second half of July, when a series of outflow 

periods and inflows with a baroclinic tendency characterized the hydrodynamic situation at the 

Darss Sill (Figure 12). Bottom temperatures nearly stagnated, salinities strongly fluctuated and 

oxygen concentrations showed alternating patterns of rapid collapse followed by a gradual, 

incomplete recovery, respectively (Figures 14 and 15). The former mirror the arrival of low-oxygen 

baroclinic inflow waters that are also clearly evident, with a time shift of a few weeks, in 

corresponding oxygen minima at the Darss Sill. The arrival of the final pulse of these low-oxygen 

waters end of September induces the lowest oxygen concentrations of the year in the Arkona 

Basin. On 01 October, a daily mean of only 6% of the saturation value was found, and the 

minimum hourly values were as small as 2%. These nearly anoxic conditions in the deepest 

layers of the Arkona Basin are the combined result of the overall small inflow activity of the year 

2017, and the low-oxygen baroclinic intrusions.  

 

Figure 15 shows that the oxygen minimum at the beginning of October with concentrations close 

to zero was only of short duration: already by 07 October, oxygen concentrations above 90% 

were observed. This rapid increase should, however, not be misinterpreted as the result of the 

arrival of first inflow waters from the barotropic inflow event that started on 03 October at the 

Darss Sill (see chapter 3). The suspicious drop in salinity (Figure 14), perfectly correlated with the 

peak in oxygen concentrations around 07 October (Figure 15), suggests that a temporary 

downwelling of the halocline, rather than any inflow activity, explains the observed temporal 

variability. This is consistent with the meteorological observations at the Arkona station, 

showing that strong winds (up to 18 m/s) from westerly directions in the days before this event 
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caused a southward Ekman transport, and thus a downwelling of oxygenated surface-layer 

waters across the southern slope of the Arkona Basin.  

 

Conclusive evidence for the arrival of the October inflow cannot be found before mid of October, 

when salinities (Figure 14) show a clear increase up to values around 17 g/kg, and oxygen 

concentrations stabilize around 70-90% of the saturation threshold (Figure 15). As described in 

chapter 3, the following weeks until end of the year were characterized by a number of additional, 

small inflow events that, however, could not fully compensate the local oxygen consumption in 

the Arkona Basin and the drainage of the near-bottom pool of salty waters through the Bornholm 

Channel. As a result, both salinity and oxygen showed a mild decline until end of December. 

Oxygen concentrations remained, however, above 50% saturation.  

 

The maximum daily mean temperature was 18.5 °C (also the hourly mean value remained below 

19 °C), observed on 31 August in the surface layer of Arkona Basin. This temperature corresponds 

exactly to the maximum temperature at the station Darss Sill, measured on the same day. After 

this date, surface layer temperatures showed a rapid decline due to the cold and windy weather 

conditions beginning of September, quickly recovered in the second half of September, and then 

gradually dropped down to approximately 6 °C at the end of the year.  
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5.  Observations at the Buoy “Oder Bank” 

 

The water mass distribution and circulation in the Pomeranian Bight have been investigated in 

the past as part of the TRUMP project (TRansport und UMsatzprozesse in der Pommerschen 

Bucht) (v. BODUNGEN et al., 1995; TRUMP, 1998), and were described in detail by SIEGEL et al. 

(1996), MOHRHOLZ (1998) and LASS, MOHRHOLZ & SEIFERT (2001). For westerly winds, well-mixed 

water is observed in the Pomeranian Bight with a small amount of surface water from the Arkona 

Basin admixed to it. For easterly winds, water from the Oder Lagoon flows via the rivers Świna 

and Peenestrom into the Pomeranian Bight, where it stratifies on top of the bay water off the 

coast of Usedom. As shown below, these processes have an important influence on primary 

production and vertical oxygen structure in the Pomeranian Bight. 

 

The Oder Bank monitoring station (OB) is located approximately 5 nm north-east of 

Koserow/Usedom at a water depth of 15 m, recording temperature, salinity, and oxygen at depths 

of 3 m and 12 m. Following the gradual replacement of the oxygen sensors at the other MARNET 

stations, optode sensors from Aanderaa (Norway) are in use also at station OB since 2010. These 

optical oxygen measurements were validated with the help of water samples taken during the 

regular maintenance cruises using the Winkler method. After the winter break, the monitoring 

station OB was brought back to service on 08 April 2017, approximately three weeks later 

compared to the previous year. Starting from that date, the station provided continuous time 

series of all parameters until 19 December, when it was again demobilized to avoid damage from 

floating ice.  

 

Temperatures and salinity levels at OB are plotted in Figure 16; associated oxygen readings are 

shown in Figure 17. Similar to the other MARNET stations, the maximum temperatures that were 

reached during the summer period were slightly smaller compared to the previous year, and 

considerably smaller compared to the record-setting years 2010, 2013, and 2014, when 

temperatures of up to 23 °C were observed at station OB. In 2017, the maximum daily mean 

temperatures in the surface layer exceeded the threshold of 20 °C only during a 3-day period in 

the first week of August. The maximum hourly mean temperature, reached on 01 August, was 21.1 

°C. As in the previous years, surface temperatures at the monitoring station OB were significantly 

larger compared to those at the deeper and more energetic stations in the Arkona Basin and the 

Darss Sill (see Figures 11 and 14), which reflects the shallower and more protected location of 

this station.  

 

There is also a dynamical reason for the stronger warming of the surface layer at station OB, 

related to the suppression of vertical mixing due to the transport of less saline (i.e., less dense) 

waters from the Oder Lagoon on top of the more salty bottom waters. During the summer months, 

such stratification events correlate excellently with short phases of enhanced temperature 

differences between the bottom and surface layers, and with increasing surface-layer 

temperatures. In 2007 and 2010, extended stratification events of this type also led to a sharp 

drop in near-bottom oxygen concentrations as a result of the reduced vertical mixing of oxygen. 
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Fig. 16: Water temperature (above) and salinity (below) measured in the surface layer and near 

bottom layer at the station OB in the Pomeranian Bight in 2017 

 

Presumably, due to the relatively cold summer conditions, events of this type were observed only 

rarely in 2017. The most notable event occurred in May, when decaying winds resulted in a 

collapse of surface layer turbulence. As an immediate consequence, pronounced saline 

stratification was observed starting from 05 May, decoupling the thin brackish surface layer from 

the cooler and saltier deeper layers (Figure 16). A strong positive heat flux observed in the 
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meteorological record during this period was reflected in a rapid warming of the surface layer, 

while the decoupled bottom layer showed nearly stagnant temperatures. Shortly before the end 

of this event, maximum differences between surface and bottom waters of up to 4 °C were 

observed. Strong winds exceeding 10 m/s during a short wind pulse on 24 May, and a longer 

windy period starting around 31 May, mixed the water column, and hence terminated this event 

by end of the month.  

Three similar events of this type were observed during the summer months in July, August and 

end of September; however, none of these was comparable in duration and strength to the 

event in May. Compared to previous years, all of the stratification events found in 2017 were 

exceptionally weak, thus mirroring the cool and windy summer conditions.   

 

 
 

Fig. 17: Oxygen saturation measured in the surface and bottom layer at the station OB in the 

Pomeranian Bight in 2017 

 

From an ecological perspective, the most important consequence of the suppression of turbulent 

mixing during these events is the decrease in near-bottom oxygen concentrations due to the de-

coupling of the bottom layer from direct atmospheric ventilation. The impact of these events on 

the oxygen budget of the Pomeranian Bight becomes evident from Figure 17, showing oxygen 

concentrations at depths of 3 m and 12 m. For all stratification events, a distinct correlation can 

be identified between increasing oxygen saturation in the surface layer and a decrease in the 

near-bottom layer, reflecting the effects of primary production and the oxygen demand from 

remineralization, respectively.  
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Lowest near-bottom oxygen concentrations (see Figure 17) in 2017 were observed during the May 

event described above, with hourly saturation values as low as 63% (23 May). The other, less 

pronounced, stratification events during the summer period resulted in minimum oxygen 

saturations of 70% (11 July), 69% (03 August) and 71% (27 September). While the latter event 

was the strongest of these three secondary events in terms of duration and saline stratification 

(Figure 16), minimum saturation values were almost identical to the preceding events. This 

reflects the impact of decreasing temperatures on the respiration rates during the beginning of 

the fall period, which, in this case, almost exactly compensates the longer duration of the 

September event.   

 

For the same reason, minima in near-surface salinity observed during the following fall and 

winter period (one event of this type can be identified in October, Figure 16), these occurrences 

did not leave an important imprint on the near-bottom oxygen concentrations. It is likely that this 

points at reduced microbial respiration rates due to the already low water temperatures at this 

time of the year. In summary, the minimum near-bottom oxygen minima during the summer 

months were less pronounced compared to the previous year, and much less evident compared 

to the anoxic conditions observed during the record-breaking year 2010 (NAUSCH et al. 2011a). 

 

Finally, it is worth noting that the increase in primary production of biomass in the Oder Lagoon, 

induced by the lateral transport of lagoon water to station OB, is likely to have resulted in the 

super-saturated oxygen concentrations that were observed in the surface-layer during all of the 

above events (Figure 17). Highest near-surface oxygen concentrations approximately 20% above 

the saturation level were found during the event in May, which is comparable to the 

concentrations found at the same time in the previous year. In addition, the lagoon water is 

known to export high nutrient concentrations towards the station. This may have resulted in 

locally increased production rates, which in turn may explain the increased oxygen 

concentrations in the surface layer. The correlation between the oxygen increase in the surface 

layer and the decrease in the near-bottom layer points at increased oxygen consumption rates 

induced by the decay of freshly deposited biomass (“fluff”).  
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6. Hydrographic and Hydrochemical Conditions  

 

6.1  Water Temperature 
 

6.1.1  The Sea Surface Temperature of the Baltic in 2017 derived from Satellite Data 

 

The development of Sea Surface Temperature (SST) of the Baltic Sea in 2017 was investigated 

using data of the American NOAA and European MetOp weather satellites. The Federal Maritime 

and Hydrographic Agency (BSH) Hamburg provided up to eight daily satellite scenes. Evaluation 

methods and methodological aspects are discussed in SIEGEL ET AL. (2008). The annual 

assessment of the development of SST in the Baltic Sea is summarised in NAUMANN et al. 2017 

and in HELCOM Environment Fact Sheets (SIEGEL & GERTH, 2017). Reflections on long-term 

development of SST since 1990 are presented in SIEGEL et al. (1999, 2006, 2008) and SIEGEL & 

GERTH (2010). The heat and cold sums of air temperature in Warnemünde (Chapter 2, Table 2) as 

well as data from MARNET stations (BSH/IOW) were included for the interpretation of the detailed 

SST development. 

 

The year 2017 was the eleventh-warmest year since 1990 and with 0.24 K slightly above the long-

term SST average. March, April and October - December contributed to the average by their 

positive anomalies. July and August were characterized by negative anomalies. The anomalies 

reached maximum values of +2 K and -3 K. The winter of 2016/2017 was comparatively warm, as 

shown in the cold sum of air temperature of Warnemünde but also in the SST. The coldest month 

was February, the coldest day the 14 February with 0-3 °C, and the day of maximum ice coverage 

the 12 February. The warming in spring followed the long-term average. Low wind periods after 

10 - 15 May and warm air masses from the Atlantic Ocean supported the SST increase and first 

development of cyanobacteria confirmed by sampling during a monitoring cruise. The warmest 

day was in the period 31 July – 2 August. Daily mean temperatures of more than 20 °C were rarely 

achieved. A stable summer- situation started 28 July and lasted until beginning of September 

with SST’s of 18-20 °C in the southern and western Baltic before the annual cooling started and 

steadily continued until the end of the year.  

 

Cold and heat sums of air temperature of Warnemünde (Table 2, Chapter 2) deliver information 

about the severity of winter and the course of summer. The winter 2016/17 was with a cold sum 

of 31.7 K d below the long-term average (102.4 K d), which means the 15th warmest winter since 

1948. February contributed with 20.2 K d mainly to this value (Average 30.6 K d). The heat sum 

of the summer (159.5 K d) exceeded the long-term average (153.4 K d) only slightly and was the 

28th warmest summer since 1948. May, June and August exceeded the long-term means and 

contributed to the summer value.  
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Anomalies of monthly mean SST for the entire Baltic Sea in Fig. 18 referring to the long-term 

means (1990-2017) are the basis for the discussion of overall thermal development in 2017. The 

seasonal development of monthly mean temperatures in the central areas of the Arkona, 

Gotland, and Bothnian Seas are presented in Fig. 19 in comparison to the long-term monthly 

means (1990-2017). Daily and weekly mean SSTs were the basis for the detailed description of 

temperature development. 

 

In January and February 2017, the surface water of the Baltic was characterised by SSTs in the 

range of the long-term averages with only slight positive and negative anomalies less than ±1 K. 

In March and April, the anomalies increased to about +1 to +2 K before it reduces again in May 

to the long-term mean value except in the western Baltic with slight positive anomalies and in 

the Gulf of Finland with slight negative values. Despite the positive anomalies in air temperature 

in May and June, the warming of the surface water of the central basins of the Baltic took place 

as in the long-term mean. In July and August, the monthly mean SST was mostly below the long-

term averages leading to negative anomalies with maximum values of up to -3 K in the northern 

Bothnian Bay and along the Finnish coast in the Gulf of Finland. Cold water patches starting from 

the western and northern coasts are initiated by upwelling during westerly winds. These negative 

anomalies in the monthly averages reflect unusual westerly winds in these months. The months 

September to December are characterised by positive anomalies particularly along the coasts, 

which reflect the absence of typical east or west wind situations and corresponding upwelling. 

The annual cycles of the Arkona Sea AS, Gotland Sea GS and Bothnian Sea BoS in Fig. 19 show 

that February was the coldest month in all regions. The winter was warmer than in average but 

the summer was colder particularly July in the western Baltic and July and August in the Bothnian 

Sea. August was the warmest month in all regions. In autumn, all regions followed the long-term 

averages.  

 
Fig. 18: Anomalies of the monthly mean sea surface temperature of the Baltic Sea in 

2017 referring to the long-term means (1990-2017) 
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Fig. 19: Seasonal cycle of SST in the central Arkona-, Gotland- and Bothnian Sea in  

2017 in comparison to the mean values (1990-2017) 

 

 

Beginning of 2017, the typical cooling took place that the monthly mean values stayed slight 

above the long-term mean values leading to 0-3 °C in the western and up to 5 °C in the central 

Baltic Sea end of January. The cooling occurred in the entire Baltic but particularly in the Belt Sea 

and in the western parts.  

Cooling continued in the first half of February that 14 February became the coldest day of the year 

(Fig. 20, left image) with 0 °C in the shallow Pomeranian Bight, 0-2 °C in the western and northern 

Baltic, and up to 4 °C in the central Gotland Sea. The maximum ice coverage (Fig. 20, right image) 

 
 

 
 

Fig. 20: Daily mean SST of the Baltic Sea on 14 February, the coldest day, and 

maximum ice coverage in the winter 2016/2017 on 12 February (Schwegmann, 

Holfort, 2017) 
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was reached around 12 February (Schwegmann, Holfort 2017). The winter 2016/2017 belonged 

to the weak ice winters. Until end of February, the SST increased again to 2-4 °C particularly in 

the western and central parts.  

In the first decade of March, the weather was rather variable, which prevented the SST from 

rising. The warming continued in the second half of March from the western part due to warm air 

masses coming from the Atlantic to the Baltic region. In Kattegat, Mecklenburg Bight and 

Pomeranian Bight up to 5-6 °C were observed. The transect of mean monthly mean SST through 

the entire Baltic in March is presented in relation to long-term average (1990-2017), previous 

year, and the variation range in Fig. 21 (upper panel) reflecting the impression from Fig. 18. SST 

of entire Baltic is higher than the long-term average except the northern most part. 

April was characterised by phases of clear weather with high solar radiation particularly in the 

southern and central Baltic Sea. This led to SST between 3-5°C in the northern Gotland Sea and 

7-9°C in the western Baltic Sea, which contributed to the positive anomalies in the monthly 

averages. 

In May, mild air masses from the Atlantic Ocean raise air temperatures in the Baltic Sea region 

starting around 10-15 May, which influenced also the water temperature. Low wind periods 

supported the warming of the surface water in the western and southern Baltic Sea also partly in 

the eastern Gotland Sea. Around 20 May and thereafter, SSTs of 13-16 °C are partly reached in 

these regions. The second half of May contributed to the positive anomalies in the southern and 

western Baltic Sea (Fig. 21 lower panel).   

After stagnation during deep pressure influence in the first decade of June a warming phase 

followed in the entire Baltic with maximum SSTs of 17-20 °C on 19 June in the western part. Wind 

mixing reduced the SST again to mainly 13-16 °C in the central and western Baltic and to 10-13 °C 

in the northern parts, which lasted until end of the month.   

 

 
Fig. 21: Monthly mean temperature distribution along the transect through the 

central basins of the Baltic Sea in March and in May 2017 in comparison to the 

previous year, the long-term mean value of 1990-2017 and the variation range 
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Beginning of July a stagnation period took place. 

The SST stayed rather similar in the entire Baltic 

except in Bothnian Bay where the SST was 

reduced to 8-11 °C on 6 July. After that, a 

continuous warming was observed until 15 July 

with 16-19 °C except the Gulfs of Bothnia and 

Finland with 12-16°C. The following days the 

warming occurred more in the northern Baltic 

with the highest SST on 27-28 July of 16-18 °C, 

which reduce again until the end of the month. In 

the other parts, 31 July was the warmest day with 

17-20°C (Fig. 22). 

This situation continued in the entire August. 

Around 15 August westerly wind induced 

upwelling in the Bothnian Bay reducing the SST 

to 9-14 °C until the end of the month. 

The SST distribution along the transect through 

the central basins of the Baltic Sea in July and 

August shows the particularities in 2017 in 

comparison to the previous year, the long-term 

mean value of 1990-2017 and the variation range. In July, the SST was below the averages in the 

entire Baltic with highest deviations in the northern parts. In August, differences occurred only 

in the north.   

In the first half of September, low-pressure systems with strong westerly winds crossed the Baltic 

Sea region, induced wind mixing and reduced the SST until about 15 September. After that, 

stagnation occurred until the end of the month (13-16 °C in Baltic proper and 9-13 °C in the 

northern gulfs).  

From about 5 October, the next period of low-pressure systems with changing wind and cloudy 

conditions accelerated cooling. After a short stagnation mid-October the cooling continued until 

the end of the month leading to SSTs of 4-8 °C in the Gulf of Bothnia, 8-12 °C in the central and 

10-13 °C the western part. 

  

  
Fig. 22: SST distribution of the Baltic Sea 

on July 31, the warmest day of year 2017. 
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The cooling continued in November particularly in the northern and western Baltic that end of 

the month temperatures of 0-5 °C occurred in Gulf of Bothnia and 6-9 °C from Western Baltic to 

the Gotland Sea.  

In December, the SST decreased very slowly that 0-3 °C were observed in Gulf of Bothnia and 3-

6 °C in the southern Baltic. Therefore, December was to warm compared to the long-term 

averages particularly in coastal regions of the entire Baltic Sea.  

 

Overall, 2017 was in the SST of the Baltic not as warm as in global air temperature but the 

eleventh warmest year of the last 28 years since 1990 (Fig. 24). The annual temperature average 

throughout the Baltic Sea was about 0.3 K higher than the long-term average. The months March, 

April and Oct - December contributed by their positive anomalies.   

  

  

 

 
 

Fig. 23: Temperature distribution along the transect through the central basins of 

the Baltic Sea in July and August 2017 in comparison to the previous year, the long-

term mean value of 1990-2017 and the variation range 
 

 
 

Fig. 24: Anomalies of the annual mean sea surface temperature of the entire Baltic Sea 

during the last 28 years (1990-2017) 
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6.1.2 Vertical Distribution of Water Temperature 

 

The routine monitoring cruises carried out by IOW provide the basic data for the assessments of 

hydrographic conditions in the western and central Baltic Sea. In 2017, monitoring cruises were 

performed in February, March, May, August and November. Snapshots of the temperature 

distribution along the Baltic talweg transect obtained during each cruise are depicted in Figure 

25. This data set is complemented by monthly observations at central stations in each of the 

Baltic basins carried out by Sweden’s SMHI. Additionally, continuous time series data are 

collected in the eastern Gotland Basin. Here the IOW operates two long-term moorings that 

monitor the hydrographic conditions in the deep-water layer. The results of these observations 

are given in Figures 26 and 28.  

 

The surface temperature (SST) of the Baltic Sea is mainly determined by local heat flux between 

the sea surface and the atmosphere. In contrast, the temperature signal below the halocline is 

detached from the surface and the intermediate winter water layer and reflects the lateral heat 

flows due to salt-water inflows from the North Sea and diapycnal mixing. The temperature of the 

intermediate winter water layer conserves the late winter surface conditions of the Baltic till the 

early autumn, when the surface cooling leads to deeper mixing of the upper layer. 

In the central Baltic, the development of vertical temperature distribution above the halocline 

follows with some delay the annual cycle of atmospheric temperature (cf. chapter 2). The winter 

of 2016/2017 was unusually mild, except the January with averaged temperature close to the 

long-term mean. This is reflected by the very small ice coverage of only 104 000km2.  From 

February to June 2017, temperatures clearly exceeded the long-term means (cf. chapter 2), 

similar to the year 2016. Thus, the cooling of sea surface during winter time was significantly 

reduced in the western and central parts of the Baltic. The spring started with air temperatures 

well above the long-term mean. From July to September the temperatures were below or close to 

the long-term mean. Whereas from October to December 2017 the air temperature was higher 

than the climatological mean.  

The deep-water conditions in the central Baltic in 2017 were mainly controlled by the extreme 

Christmas MBI of December 2014 Baltic (MOHRHOLZ et al., 2015), and the subsequent minor inflow 

events in 2015 to 2017.  The most recent barotropic inflow events were observed in November 

and December 2016, and in February 2017. 

 

At the beginning of February 2017 the temperature distribution along the Baltic talweg revealed 

the typical winter cooling in the surface layer. As a result of the cooler than average January 

(compare chapter 2), surface temperatures decreased in the shallow areas of the Mecklenburg 

Bight to values about 2.5 to 3.0 °C. Surface temperatures in the western part of Arkona Sea were 

below that. The minimum SST was observed at station 104 with 2.1 °C. Except on this station, the 

surface temperatures were well above the density maximum with the result that further cooling 

forced temperature driven mixing. In the central Baltic, the deep convection associated with 

cooling largely homogenized the surface layer and the former winter water layer. The thermocline 

at station TF271 in the eastern Gotland Sea was found at a depth of 70 m, and reached the 

permanent halocline starting at the same depth. With 3.6 °C, the upper layer temperature at 

station TF271 exceeded the temperature of the density maximum by 0.8 K. Further cooling thus 
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preserved the deep vertical convection, and contributed to further homogenization of the surface 

layer. Generally, the surface temperatures in the central Baltic between 3.0 and 3.6 °C were 

above the long-term average, but well below the extreme warm temperatures in February 2016. 

The situation was comparable with February 2015. Towards the northern Gotland Basin the SST 

was slightly decreasing. At the northernmost station near 59°N the sea surface temperature was 

about 2.1 °C. 

The temperature distribution below the halocline reflects the impact of the inflow events of saline 

water from the North Sea. The moderate inflow during December 2016 dominated the bottom 

temperature distribution in the Arkona and the Bornholm Basin. Waters of the inflow covered a 

15m thick bottom layer in the centre of the Arkona Basin, with a bottom temperature of 6.2 °C. 

Baroclinic late summer inflows and the moderate inflow in November 2016 have flushed the 

halocline of the Bornholm Basin with warm water. Till February 2017 this water was mixed up 

with ambient cooler water in the western and central Bornholm Basin. The majority of this inflow 

water was shifted eastward and filled the eastern part of the halocline in the Bornholm Basin 

and the entire deep layer of the Slupsk Furrow. It was characterised by temperature above 8 °C, 

with maximum value of about 9.5 °C in the Slupsk Furrow. The deep layers of the Bornholm Basin 

were covered by the cooler and high saline waters from the December inflow 2016. Here the 

bottom temperature was about 7 °C. Between the eastern outlet of the Slupsk Furrow and the 

entrance of the eastern Gotland Basin some warm water plumes were observed in the bottom 

layer. These plumes spread eastward and were originated from pulse like overflows of the 

eastern sill of Slupsk Furrow. The deep water in the Gotland Basin was still covered by the warmer 

inflows of the recent years. The bottom temperature at station TF 0271 was at 7.2 °C, about 0.6 K 

below the value observed in February 2016. The Bottom water temperature in the Farö Deep of 

6.7 °C was significantly lower. It compares to the temperature in the eastern Gotland Basin at 

120 m, which is the sill depth between both locations. 

 

The surface temperatures observed during the monitoring cruise in March were still comparable 

with the situation in February. As a result of the warm than normal air temperatures in February 

and March 2017, the surface temperature of the western Baltic was well above the temperature 

of density maximum. In the central Baltic Sea the SST remained closed to the level of early 

February. Only in the northern part of the Baltic transect the SST was decreased by about 0.5 K 

since the previous cruise. The maximum temperature of 3.8 °C was observed in the Fehmarn Belt. 

Other areas of the western and central Baltic Sea depicted similar surface temperatures of 3.5 °C 

in the Arkona Basin, 3.6 °C in the Bornholm Basin, and 3.3 °C in the eastern Gotland Basin. The 

minimum SST of 2.3 °C was observed in the northern Gotland Basin. Although the temperatures 

in the western and central Baltic clearly exceeded those of the density maximum the onset of 

seasonal warming temperature stratification in the surface layer has not started at that time. 

In the second half of February 2017 a moderate barotropic inflow imported about 68 km³ of cold, 

saline water into the Baltic. This inflow water replaced the former bottom water in the Arkona 

Basin. The temperature of this water body ranged between 3.0 and 3.2 °C, and was slightly cooler 

than the surface layer. Partly the saline water of this inflow event has passed the Bornholm Gat 

and was spreading into the halocline in the north western Bornholm Basin. The temperature 

distribution in the deep and water of the Bornholm Basin depict a patchy structure.  The warm 

water patches from the November 2016 inflow were mixed up with cooler water from the inflow 
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in December 2016. The temperature in the halocline in March depicted a high variability in a 

range between 4.2 and 8.6 °C. The bottom water temperature in the Bornholm basin of 6.95 °C 

remained at the value observed in February.  The warm water in the deep-water layer of the 

Slupsk Furrow has cooled due to mixing with cool inflow water from December 2016. Partly the 

former deep waters from the Slupsk Furrow have reached the eastern Gotland basin as a series 

of warm water patches spreading northward. According to its density the water will be 

sandwiched in the upper deep water of the eastern Gotland Basin. The vertical excursions of 

isotherm in the halocline layer of the eastern Gotland basin indicate the active inflow process. 

The bottom temperature at station TF 0271 (Gotland Deep) and in the Farö Deep did not changed 

significantly were at 7.14 °C and 6.7 °C respectively.  

 

Between March and May, the surface water of Baltic warmed noticeably due to increasing air 

temperatures and solar radiation. Surface temperatures ranged between 8.7 °C in the Kiel Bight, 

7.0 °C in the Arkona Basin, 6.1 °C in the Bornholm Basin, and 5.7 °C in the eastern Gotland Basin. 

Thus, the SST was about 2.5 to 3.0 K lower than in the extremely warm May 2016. In the western 

Baltic the seasonal thermal stratification was well pronounced. East of the Bornholm Basin the 

vertical temperature gradient was weaker, and the thermocline was at unusual deep layers. Thus, 

the winter water layer was thinner than in previous years, except in the norther Gotland Basin. 

Compared to the climatological value the intermediate layer was extremely warm. Usual winter 

water temperatures are about 2 °C, controlled by the temperature of maximum density of surface 

water. In the eastern Gotland Sea, the minimum temperature of intermediate winter water was 

4.0 °C in May 2017. It was slightly warmer (+0.2 K) than in the previous year. Only in the northern 

Gotland Basin, where the March SST were close to the temperature of density maximum, the 

winter water temperatures were lower but with about 3 °C still warmer than average.  

In the halocline of the Bornholm Basin the warmer water body of was mixed up completely with 

the cold inflow water from the February 2017 inflow. Here the temperature was about 4 °C. The 

bottom water temperature of 6.93 °C in the Bornholm Basin remained at the level from March 

2017. In the Slupsk Furrow the former deep water was replaced by a mixture of former Bornholm 

Basin halocline water and cold water from the February inflow. Compared to March the bottom 

temperature was decreased by 1.2 K to 6.43 °C in the Slupsk Furrow. Parts of this cool water have 

passed the eastern sill of the Slupsk Furrow and spreads northward. The warm water patches 

observed north of the Slupsk Furrow in March have reached the eastern Gotland basin. Here it 

reached the deep layers between to 150 and 210 m. However, the bottom layer temperatures 

were not changed and remained at 7.14 °C.  

By the mid of August 2017, typical summer thermal stratification had become established 

throughout the Baltic Sea. The seasonal thermocline lay at depths between 20 m and 30 m, and 

separated the strongly warmed layer of surface water from the cool winter intermediate water. In 

minimum temperatures in the intermediate water was about 4.0 °C in the eastern Gotland Basin, 

and 3.5 °C in the northern Gotland Basin, which was slightly below the value of 2016. In the 

Bornholm Basin the winter water was nearly vanished, and replaced by a mixture of old and new 

inflow waters. Only in the eastern part few remains of the winter water were identifiable above 

the halocline with temperatures of below 5.0 °C.  

The surface temperatures in spring were well above the long-term mean, and also the May and 

June 2017 were 1.1 K warmer than the long term average. However, since the July was comparable 
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cold and wet the sea surface temperatures in the western and central Baltic Sea were on a normal 

range between 17 °C about 19 °C. At station TF213 in the Bornholm Basin 17.7 °C was recorded on 

15 August, and 17.6 °C was recorded at station TF271 in the eastern Gotland Basin. Generally, the 

SST was 1.0 to 1.5 K below the values of the previous year. 

A calm period in the end of July favoured baroclinic inflow conditions at the Darss Sill. Warm 

saline water from the Kattegat entered the Baltic via the Belt Sea and formed a 10 to 15 m thick 

warm bottom layer in the western Arkona Basin. Here, bottom temperatures up to 16.3 °C were 

observed. A part of this water body has already passed the Bornholmgat. The warm water is 

interleaved in the halocline of the western Bornholm Basin at depth of 50 to 60 m. The core 

temperature of this layer was about 10.5 °C. 

The cold inflow water from the February inflow has completely replaced the deep water in the 

Slupsk Furrow. Here bottom temperatures were about 5.6 °C. The major part of this inflow water 

has passed the eastern sill of the Slupsk Furrow and spreads into the halocline layer of the 

eastern Gotland Basin, visible as cold patch at the entrance of the basin. The bottom temperature 

in the eastern Gotland Basin decreased slightly to 6.95 °C.  

 

The temperature distribution in mid of November 2017 revealed ongoing autumnal erosion of the 

thermocline in the surface layer. Since the months October and November depicted a high 

positive air temperature anomaly also the SST observed in November 2017 was higher than 

usual. The surface layer has deepened, extending to a depth of 35 m in the western Baltic and  to 

45 m depth in the eastern Gotland Basin. In the Arkona Basin surface temperature of 9.2 °C was 

observed. Towards the Bornholm Basin it decreases slightly to 8.5 °C (station TF213). In the 

Slupsk Furrow an SST of 8.8 °C was detected. Further to the eastern Gotland Basin and the Farö 

deep a decreasing surface temperature was found, except of a warm water body in the southern 

part of the eastern Gotland Basin were the SST reached 10 °C. The central station TF271 and the 

Faro Deep depicted surface temperatures of 8.5 °C and 7.6 °C respectively. The deepening of 

thermocline reduced the vertical extent of the intermediate winter water layer in the central Baltic 

to layer of 20 m to 35 m thickness, with minimum temperatures of 4.9 °C (station TF286). No layer 

of winter intermediate water was present in the Bornholm Basin and the western part of Slupsk 

Furrow. 

Baroclinic inflow events in the late summer and autumn brought some warm saline water into 

the western Baltic. This water spread along the bottom of the Arkona basin eastward. Maximum 

temperature in this water body of 12.4 °C was observed. The major part of the water from 

baroclinic summer inflows has already passed the Bornholmgat and is sandwiched between the 

upper layer and the deep water in the Bornholm Basin. The density of the inflowing water was 

too low to replace the cooler bottom water in the Bornholm basin.  At the time of the cruise the 

warm summer inflow has already passed the Slupsk Sill. It replaced the former bottom water in 

the western and central part of the Slupsk Furrow.  
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Fig. 25: Temperature distribution along the talweg transect through the Baltic Sea between 

Darss Sill and northern Gotland Basin 
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Fig. 25: Temperature distribution along the talweg transect through the Baltic Sea between 

Darss Sill and northern Gotland Basin 

 

As part of its long-term monitoring programme, IOW operates hydrographic moorings near 

station TF271 in the eastern Gotland Basin since October 2010. In contrast to the Gotland 

Northeast mooring, operational since 1998 and from where the well-known ‘Hagen Curve’ is 

derived, the mooring at TF271 also collects salinity and oxygen data. The gathered time series 

data allow the description of the development of hydrographic conditions in the deep water of 

the Gotland Basin in high temporal resolution. This time series greatly enhances the IOW’s ship-

based monitoring programme. Figure 26 shows the temperature profile at five depths in the deep 

water of the eastern Gotland Basin between October 2016 and December 2017. The temperature 

stratification in the deep water is characterized by a downward increasing temperature. The 

vertical temperature gradient in October 2016 was strong. The temperature difference between 

140m depth and the bottom was about 0.8 K. Due to minor inflows into the halocline and 

diapycnal mixing the temperature stratification was significantly reduced till March 2017. Then 

the temperature difference between the 140 m depth level and 233 m depth was only about 

0.35 K. In begin of April 2017 warm water from the autumn inflows 2016 reached the deep layers 

of the Gotland deep. It caused a temperature increase by about 0.3 K in the all water layers, 

except the bottom layer at 233 m depth. After this inflow the warmest deep water was observed 

at 210 m depth. The inflow caused a high temporal variability in the deep water and a further 
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reduction of the vertical temperature differences. By mid of June another inflow pulse was visible. 

At that time the cooler water from February 2017 inflow reached the center of the eastern Gotland 

basin. The temperature gradient almost vanished and the temperature decreased by about 0.2 K. 

This inflow affected also the bottom layer, where the temperature dropped to about 7.0 °C. A high 

variability of temperature was observed during the active inflow phase till the end of July 2017. 

Afterwards the remaining gradient was low. The temperature difference between 140 m depth 

and the bottom was about 0.1 K, with downward decreasing temperatures. Till December 2017 

no further inflow was observed and the conditions remained unchanged. 

 

 
 

Fig. 26: Temporal development of deep water temperature in the Eastern Gotland Basin (station 

Tf271) from October 2016 to December 2017 (daily averages of original data with 10 min sampling 

interval) 

 

Table 6 summarises the annual means and standard deviations of temperature in the deep water 

of the central Baltic based on CTD measurements over the past five years. Compared to 2016 the 

deep-water temperatures remained at the same level in the Bornholm Basin and the eastern 

Gotland Basin. However, this is not caused by stagnant conditions, but by a continuous 

sequence of minor inflow events. In the northern and western Gotland Basin the deep-water 

temperatures increased by 0.2 to 0.27 K. This continued the increasing trend since the extreme 

Christmas MBI in 2014. In 2017 the strongest increase of 0.27 °C was detected in the Faro Deep. 

However, also in the Landsort deep an increase of 0.25 °C was observed. This illustrates, that 

inflow waters of the recent barotropic inflows shifted former deep water from the eastern Gotland 

Basin towards north and further to the western Gotland Basin. In all deep basins the bottom 

temperature was the highest observed during the last five years. The standard deviations of 

temperature fluctuations in 2016 were highest in the Bornholm Deep in the westernmost basin. 
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The stronger fluctuations observed there are attributable to high inflow activity and the deep-

water renewal associated with it.  

 

Table 6: Annual means and standard deviations of temperature, salinity and oxygen 

concentration in the deep water of the central Baltic Sea: IOW- and SMHI data (n= 5-20) 

 

Water temperature (° C; maximum in bold) 
 

Station Depth/m 2013 2014 2015 2016 2017 

       

213 80 5 . 5 5  + 0 . 7 8  6 . 9 9  + 1 . 2 9  7 . 0 1  + 0 . 0 8  7 . 0 6  + 0 . 6 3  7 . 0 6  + 0 . 2 8  

(Bornholm 

Deep) 

      

       

271 200 6 . 3 3  + 0 . 0 3  6 . 1 1  + 0 . 1 9  6 . 7 9  + 0 . 1 9  7 . 0 6  + 0 . 1 2  7 . 0 5  + 0 . 1 5  

(Gotland Deep)       

       

286 150 5 . 8 3  + 0 . 0 5  5 . 6 9  + 0 . 0 4  6 . 3 3  + 0 . 2 5  6 . 5 6  + 0 . 0 6  6 . 8 3  + 0 . 1 5  

(Fårö Deep)       

       

284 400 5 . 4 6  + 0 . 1 1  5 . 2 7  + 0 . 0 6  5 . 4 6  + 0 . 3 0  5 . 9 2  + 0 . 1 0  6 . 1 4  + 0 . 1 9  

(Landsort 

Deep) 

      

       

245 100 5 . 2 2  + 0 . 0 7  5 . 0 0  + 0 . 0 4  5 . 0 3  + 0 . 0 6  5 . 2 8  + 0 . 0 9  5 . 5 3  + 0 . 0 6  

(Karlsö Deep)       

 

 

 

Salinity (maximum in bold) 
 

Station Depth/m 2013 2014 2015 2016 2017 

       

213 80 1 5 . 1 6  + 0 . 2 4     1 6 . 0 6  + 0 . 4 1  1 8 . 8 6  + 0 . 2 5  1 8 . 2 6  + 0 . 4 0  1 7 . 4 0  + 0 . 4 6  

(Bornholm 

Deep) 

      

       

271 200 1 2 . 0 0  + 0 . 0 4   1 2 . 0 6 + 0 . 1 1  1 2 . 9 5  + 0 . 3 5  1 3 . 3 5  + 0 . 0 9  1 3 . 3 0  + 0 . 0 4  

(Gotland Deep)       

       

286 150  1 1 . 2 8  + 0 . 1 7  1 1 . 3 6  + 0 . 0 8  1 1 . 9 3  + 0 . 2 2  1 2 . 3 5  + 0 . 1 2  1 2 . 5 8  + 0 . 0 7  

(Fårö Deep)       

       

284 400 1 0 . 4 3  + 0 . 0 5  1 0 . 3 7  + 0 . 0 8  1 0 . 6 3  + 0 . 3 3  1 1 . 1 2  + 0 . 1 3  1 1 . 2 9  + 0 . 1 9  

(Landsort 

Deep) 

      

       

245 100 9 . 7 6  +   0 . 1 8    9 . 5 8  + 0 . 1 1    9 . 6 4  + 0 . 1 7   1 0 . 0 0  + 0 . 1 6   1 0 . 2 8  + 0 . 1 1  

(Karlsö Deep)       
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Oxygen concentration (ml/l; hydrogen sulphide is expressed as negative oxygen equivalents; 

maximum in bold) 
 

Station Depth/m 2013 2014 2015 2016 2017 

       

213 80 1 . 6 2  + 1 . 0 5  2 . 0 7  + 1 . 4 7  3 . 6 0  + 1 . 7 5  1 . 3 0  + 0 . 9 3  0 . 9 0  + 0 . 8 3  

(Bornholm 

Deep) 

      

       

271 200 - 5 . 3 0  + 0 . 8 3  - 2 . 9 4  + 2 . 3 8  0 . 9 3  + 0 . 8 0  0 . 5 5  + 0 . 2 6  0 . 1 3  + 0 . 1 1  

(Gotland Deep)       

       

286 150 - 1 . 9 5  + 1 . 4 6  - 2 . 3 5  + 0 . 5 3    - 0 . 8 7  + 0 . 2 0  - 0 . 0 5  + 0 . 2 3  0 . 3 4  + 0 . 3 3  

(Fårö Deep)       

       

284 400 - 1 . 1 1  + 0 . 2 4  - 1 . 0 2  + 0 . 6 8  - 0 . 8 6  + 0 . 1 8  - 0 . 9 8  + 0 . 2 3  - 0 . 4 1  + 0 . 3 1  

(Landsort 

Deep) 

      

       

245 100 - 0 . 7 2  + 0 . 7 3  - 0 . 8 5  + 0 . 5 2  - 0 . 8 7  + 0 . 5 1  - 0 . 9 3  + 0 . 4 7  - 0 . 7 5  + 0 . 6 6  

(Karlsö Deep)       

 

 

6.2 Salinity 

 

The vertical distribution of salinity in the western and central Baltic Sea during IOW’s five 

monitoring cruises is shown in Figure 27. Salinity distribution is markedly less variable than 

temperature distribution, and a west-to-east gradient in the surface and the bottom water is 

typical. Greater fluctuations in salinity are observed particularly in the western Baltic Sea where 

the influence of salt-water inflows from the North Sea is strongest. The duration and influence of 

minor inflow events is usually too small to be reflected in overall salinity distribution. Only 

combined they can lead to slow, long-term changes in salinity. The salinity distributions shown 

in Figure 27 are mere ‘snapshots’ that cannot provide a complete picture of inflow activity. In 

2017 the evolution of salinity distribution was mainly controlled by the moderate inflows in 

November and December 2016, and the February inflow 2017. However, also the baroclinic 

inflows in late summer and autumn 2016 and 2017 caused significant changes in the western 

Baltic. None of the inflows could be completely covered by the IOW monitoring cruises. They 

supplied only snapshots of different stages of particular inflow events. Two of the five data sets 

show an inflow event in the western Baltic. However, it is not possible to produce meaningful 

statistics on inflow events, by using only the monitoring cruises.  

 

At the beginning of February the major fraction of the November inflow 2016 waters have passed 

the Slupsk Sill. Here the bottom salinity increased to 15.2 g/kg. A patch of higher saline water of 

13.2 g/kg was also detected between the eastern outlet of the Slupsk Furrow and the Gotland 

deep. In the Arkona Basin cooler saline water from the December 2016 inflow covered the bottom 

layer. Bottom salinity in the Arkona Basin at this time was measured with a maximum of 

17.3 g/kg. Parts of this water have reached the halocline of the Bornholm Basin.  The deep layers 

of Bornholm Basin were still filled with high saline water from the inflow series in winter 
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2015/2016. Here the bottom salinity was about 18.5 g/kg. The halocline of the Bornholm Basin 

was occupied by a mixture of former deep water, warm water patches from the baroclinic summer 

inflows and new inflow water from December 2017. The salinity of this water body raged between 

10 and 17 g/kg. West of the Darss Sill first sign of the high saline water from the February 2017 

inflow was visible with bottom salinities of about 21.7. After the inflow series in since the winter 

2014/2015 the salinity in the deep water of the central Baltic Sea was at a high level at the 

beginning of 2017. On the seabed in the Gotland Deep, a salinity of 13.5 g/kg was measured in 

February 2016. This was still close to the overall maximum observed after the extreme inflow 

event in 1951. The 12 g/kg isohaline lay at a depth of around 103m, after 127m and 163m in 

February 2016 and 2015 respectively. The 123 g/kg isohaline was found at 154m depth. 

By the second half of March first saline waters of the February inflow have reached the Bornholm 

Basin. The pool of saline water in the Arkona Sea was replaced by the inflow water from February 

2017. However, the bottom salinity was still at the same level of 17.1 g/kg. The bottom salinity in 

the Bornholm Basin increased slightly to 18.75 g/kg in the central part of the basin. The halocline 

in the basin was well above the sill depth of the Slupsk Sill, pointing to ongoing drainage of 

saline water into the Slupsk Furrow. There the pool of saline water halocline was filled up, and 

the bottom salinity increased to 16.13 g/kg. North of the Slupsk Furrow again a plumes of the 

November 2016 inflow water spread toward the eastern Gotland Basin as observed in February. 

In the eastern Gotland Basin the conditions remained nearly unchanged, despite an uplift of the 

13 g/kg isohaline in the southern part of the Basin. At the Gotland deep the 12 g/kg and the 13 

g/kg isohalines were found at 105 m and 160 m, respectively. In the Farö Deep was the 12 g/kg 

isohaline was observed at 108 m depth. The bottom salinity was 12.66 g/kg here. 

At the beginning of May the saline water pool in the Arkona Basin was strongly reduced. The 

halocline was found at 35 to 40 m depth. The bottom salinity was only about 11.3 g/kg. In the 

Bornholm Basin the halocline relaxed to the sill depth of the Slupsk Sill. Below the halocline the 

Basin was filled with a mixture of former bottom water and high saline waters of the February 

inflow. The bottom salinity dropped slightly to 18.18 g/kg. In the Slupsk Furrow the halocline 

depicted an eastward slope from 55 m depth near Slupsk Sill to 70m at the eastern sill of Slupsk 

Furrow. A larger part of saline water has left the Slupsk Furrow towards the eastern Gotland 

Basin, where it formed two patches of higher saline water. At station TF271 (Gotland Deep) the 

bottom salinity was 13.45 g/kg. Here the 13 g/kg isohaline rose from 160 m in March to a depth 

of 153 m. The 12 g/kg isohaline did not changed their position. 

 In August changes of salinity distribution in the western Baltic were caused by the baroclinic 

summer inflow, which enhanced the stratification and bottom salinity in the Arkona Basin. In the 

Bornholm Basin mixing with overlaying water caused a slight dilution of deep water. The bottom 

salinity sunk little to 18.02 g/kg. The inflow process of the November 2017 water into the eastern 

Gotland Basin has finished. In the Gotland Deep the 13 g/kg isohaline was uplifted by about 10m 

to 142 m. The bottom salinity remained practically unchanged.  

At the mid of November, salinity stratification west of the Darss Sill indicated a new inflow. Here 

the surface salinity exceeded 17 g/kg. In the Arkona Basin warm and high saline water from the 

baroclinic summer/autumn inflows covered the bottom layer. The maximum salinity amounted 

to 18.6 g/kg.  
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Fig. 27: Salinity distribution along the talweg transect through the Baltic Sea between Darss Sill 

and northern Gotland Basin 
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Fig. 27: Salinity distribution along the talweg transect through the Baltic Sea between Darss Sill 

and northern Gotland Basin 

 

Table 6 shows the overall trend of salinity in the deep water of the Baltic in the past five years. 

As a result of the recent series of inflow events since 2014 the deep-water salinity depicted a 

positive trend in all major basins of the central Baltic. The bottom salinity in the Fårö Deep, Karlsö 

Deep and Landsort Deep reached maximum values of the past five year period. The deep-water 

salinity in the eastern Gotland Basin remained at the high level of the previous year. Only in the 

Bornholm Basin a decrease of bottom salinity was observed in 2017. However, also here the 

salinity was still high, and well above the climatological mean. The high standard deviation of 

salinity in the Bornholm basin points to rapid fluctuations, caused by the particular inflow 

events.  

 

As in the recent year no clear trend emerges over the past five years for salinity in the surface 

layer of the Baltic. Table 7 summarises the variations in surface layer salinity. Compared to the 

values in 2016, surface layer salinity in the Bornholm Basin decreased significantly in 2017. The 

surface salinity increased in the eastern Gotland Basin and the Farö Deep, and remained at a 

high level in the western Gotland basin. Standard deviations of surface salinity are slightly above 

the level with those of the long-term average, but still in the usual range. Generally, the surface 
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salinity will increase with a delay of about ten years after large inflow events. Thus, a significant 

increase in surface salinity was not expected in 2017.  

 

Table 7: Annual means of 2013 to 2017 and standard deviations of surface water salinity in the 

central Baltic Sea (minimum values in bold, n= 5-26). The long-term averages of the years 1952-

2005 are taken from the BALTIC climate atlas (FEISTEL et al., 2008) 

 

Station 1952-

2005 

2013 2014 2015 2016 2017 

       

213 7.60 7 . 2 8  ± 0 . 1 2  7 . 6 5  ± 0 . 1 8  7 . 7 6  ± 0 . 2 0  7 . 7 5  ± 0 . 2 6  7 . 4 6  ± 0 . 2 0  

(Bornholm 

Deep) 

± 0 . 2 9       

       

271 7.26 6 . 7 8  ± 0 . 2 8  6 . 8 7  ± 0 . 1 7  7 . 0 6  ± 0 . 1 5  6 . 8 9  ± 0 . 3 4  7 . 3 3  ± 0 . 2 2  

(Gotland Deep) ± 0 . 3 2       

       

286 6.92 6 . 6 4  ± 0 . 2 9  6 . 7 3  ± 0 . 2 1  6 . 7 4  ± 0 . 2 5  6 . 6 3  ± 0 . 3 3  7 . 1 3  ± 0 . 4 3  

(Fårö Deep) ± 0 . 3 4       

       

284 6.75 6 . 5 2  ± 0 . 1 2  6 . 6 0  ± 0 . 2 4  6 . 2 9  ± 0 . 4 4  6 . 5 7  ± 0 . 1 6  6 . 5 4  ± 0 . 3 4  

(Landsort 

Deep) 

± 0 . 3 5       

       

245 6.99 6 . 7 7  ± 0 . 1 0  7 . 0 0  ± 0 . 1 3  6 . 9 1  ± 0 . 2 5  6 . 9 8  ± 0 . 1 7  6 . 9 3  ± 0 . 1 8  

(Karlsö Deep) ± 0 . 3 2       

 

 

Figure 28 shows the temporal development of salinity in the deep water of the eastern Gotland 

Basin between October 2016 and December 2017, based on data from the hydrographic 

moorings described above. In October 2016 the data depict a strong vertical salinity gradient of 

about 0.01 g/kg m, established in the course of the recent series of inflow events since December 

2014. 

From November 2016 till January 2017 the temporal variability of salinity in all depth layers was 

enhanced, pointing to an active inflow. However, the salinity was only slightly increased in the 

upper deep water between 140 and 160 m depth. Below 180 m the salinity remained at the same 

level. Unfortunately, there are no data for the bottom layer between November 2016 and March 

2017. The MicroCat mounted at this level could not be recovered during the mooring maintenance 

in March 2017. Thus, there is no information when the salinity in the bottom layer dropped from 

13.7 g/kg in October 2016 to 13.45 g/kg in March 2017. Afterwards a weak increase in deep water 

salinity was observed between April and September 2017. The bottom water salinity depicted a 

small decrease to 13.4 g/kg during that time. Consequently, the vertical salinity gradient was 

reduced. Till December 2017 a week decrease of deep water salinity was observed. As with 

temperature, the salinity time series reveal strong, short-term fluctuations whose amplitude 

decreases with depth. For the most part, these fluctuations correlate well with the observed 

temperature variability.  
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Fig. 28: Temporal development of deep water salinity in the Eastern Gotland Basin (station TF271) 

from October 2016 to December 2017 (Daily averages of original data with 10 min sampling 

interval) 

 

 

6.3 Oxygen distribution 

 

Exchange processes with the atmosphere and biogeochemical processes determine the oxygen 

content of seawater. In surface water (Fig. 29, upper panel), the oxygen is usually close to 

saturation that is mainly controlled by temperature, but the salinity of seawater and air pressure 

play a role too. Increasing temperature could lead to intermediate super-saturation of oxygen in 

surface waters because equilibration with the atmosphere depend on wind speed and wave 

activity and could be slow at calm conditions. However, more important are assimilation and 

dissimilation processes on the oxygen content. During photosynthesis by phytoplankton large 

amounts of oxygen are released that in turn could lead to a strong super-saturation in the 

euphotic zone. Whereas, during respiration oxygen is consumed. In deeper water layers without 

contact to the atmosphere, oxygen concentration then clearly declines (Fig. 29, lower panel). In 

especially unfavorable hydrographic conditions, below permanent or temporary pycnoclines that 

are caused by strong temperature and/or salinity differences, lasting oxygen consumption 

during organic matter degradation can lead to total depletion of oxygen (lower panel). 

Denitrification and subsequent sulphate reduction is then used for on-going remineralization 

and in turn, toxic hydrogen sulphide is released (shown as negative oxygen).  

In terms of the deep-water oxygen concentration, the year 2017 still reflected the influence of the 

MBI of December 2014. The maxima of 2015 in the Bornholm and the eastern Gotland Sea seem 

to have further propagated along the thalweg to the Fårö Deep and the Landsort Deep that both 
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currently reflect their maximum in 2017. However, the supplied oxygen is diluted and 

permanently consumed by degradation processes. Thus, the annual mean maximum of 3.6 ml/l 

oxygen that was recorded at the Bornholm Deep weakened to 0.93 ml/l at Gotland Deep in 2015. 

In 2017 the oxygen concentration at Fårö Deep and the Landsort Deep stations still increased. 

Meanwhile the Fårö Deep reached 0.33 ml/l oxygen in deep waters and at Landsort Deep the 

degradation of the hydrogen sulphide legacy went on from -1.11 ml/l in 2013 to -0.46 ml/l in 2017 

(Table 8). However, some additional oxygen supply by entrainment along isopycnal surfaces may 

have contributed to the positive development. 

 

Contributions to 6.1-6.3 Oxygen Distribution 

Table 8: Oxygen concentration (ml/l) in deep waters of the Baltic Sea deeps (Hydrogen 

sulphide is converted to negative oxygen equivalents; maxima are given in bold) 
 

Station Depth

/m 

2013 2014 2015 2016 2017 

       

213 80 1 . 6 2  + 1 . 0 5  2 . 0 7  + 1 . 4 7  3 . 6 0  + 1 . 7 5  1 . 1 9  +  1 . 0 0  0 . 8 8  + 0 . 7 0  

(Bornholm Deep)       

       

271 200 - 5 . 3 0  + 0 . 8 3  - 2 . 9 4  + 2 . 3 8  0 . 9 3  + 0 . 8 0  0 . 6 2  + 0 . 2 4  0 . 0 7  + 0 . 2 0  

(Gotland Deep)       

       

286 150 - 1 . 9 5  + 1 . 4 6  - 2 . 3 5  + 0 . 5 3    - 0 . 8 7  + 0 . 2 0  - 0 . 0 5  + 0 . 2 2  0 . 3 3  + 0 . 3 3  

(Fårö Deep)       

       

284 400 - 1 . 1 1  + 0 . 2 4  - 1 . 0 2  + 0 . 6 8  - 0 . 8 6  + 0 . 1 8  - 0 . 9 2  + 0 . 3 3  - 0 . 4 6  + 0 . 2 6  

(Landsort Deep)       

       

245 100 - 0 . 7 2  + 0 . 7 3  - 0 . 8 5  + 0 . 5 2  - 0 . 8 7  + 0 . 5 1  - 1 . 1 5  +  0 . 3 4  - 0 . 9 6  +  0 . 5 8  

(Karlsö Deep)       

 

 

The surface water oxygen concentration basically reflected the temperature course of the year 

with higher concentration in winter and deceasing values during warming of the surface water. 

This development is modulated by oxygen production during the spring time primary production 

(green bars) - earlier in spring in the western Baltic Sea and in May 2017 in the Gotland Sea 

surface water (Fig. 29). The bottom water of the western Baltic Sea showed a decreasing oxygen 

concentration during the development of the thermocline from March to May and further to 

August 2017 that indicated an ongoing decoupling of the bottom waters from the surface water 

oxygen reservoir and intensified remineralization in bottom waters and the sediments. The 

oxygen supply of the major Baltic inflow was almost consumed in the eastern Gotland Sea basin 

but its influence is distributed further north and to the western Baltic Sea deep waters as 

discussed above. 
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Fig. 29: Comparison of average oxygen/hydrogen sulphide concentrations in surface (upper 

panel) and bottom waters (lower panel) of the studied Baltic Sea areas Belt Sea, Mecklenburg 

Bight, Arkona Sea, Bornholm Sea, central Eastern Gotland Sea, Northern Gotland Sea, and 

Western Gotland Sea. 

 

The period of greatest oxygen depletion is generally observed in late summer / early autumn – 

the time of the year not covered by IOW cruises. Nevertheless, the Landesamt für Landwirtschaft, 

Umwelt und ländliche Räume des Landes Schleswig-Holstein (LLUR) has for many years 

measured near-bottom oxygen concentrations at that time of the year. Investigations in 2017 

were conducted from 28th August to 12th September. Near-bottom oxygen concentrations were 

measured at 36 stations, 29 of them at depths >15 m (Figure 30). 

 

Oxygen in surface and in bottom waters of selected Baltic Sea areas in 2017
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Fig. 30: Oxygen deficiency in the western Baltic Sea in September 2015 (LLUR, 2017) –  

O2 [mg/l] x 0.7005 = O2 [ml/l] 

 

Evaluation of measurements from 2017 at stations with water depths >15 m shows that 90 % of 

all measurements were classified as poor or inadequate (<4 mg/l oxygen). At the bottom also 

hydrogen sulphide was detected at the regions Flensburg Fjord and Geltinger Bight. In 2016 these 

were 63 % measurements had been so classified. In conclusion, the oxygen conditions are much 

more worse than in the previous year and close to the poorest oxygen conditions so far in the 

year 2002, their share had been 91 %. According to LLUR (2017), fish kill of up to 20 species due 

to oxygen deficiency /hydrogen sulphide was observed at Eckernförde Bight as well as Kiel Fjord 

and Flensburg Fjord in beginning September. Persistent and strong south-westerly winds 

transported the well oxygenated surface water out of these bights and upwelling of hypoxic to 

euxinic bottom water occurred. If fish populations get trapped in these conditions, fish kill events 

can happen.    

For a more detailed analysis of the seasonal development of oxygen saturation, see the 

measurements from Darss Sill (chapter 3), the Arkona Basin (chapter 4), and Oder Bank 

(chapter 5). 

In the more easterly, deeper basins of the Baltic Sea, in contrast, deep-water conditions are 

primarily influenced by the occurrence or absence of strong barotropic and/or baroclinic inflows. 
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Figure 31 shows oxygen conditions along a transect from Darss Sill to the northern Gotland Basin 

during the five monitoring cruises undertaken in 2017. 

 

 
Fig. 31a: Vertical distribution of dissolved oxygen in 2017 between the Darss Sill and the 

northern Gotland Basin (February to May). 
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Fig. 31b: Vertical distribution of dissolved oxygen in 2017 between the Darss Sill and the 

northern Gotland Basin (August to November). 
 

 

6.4  Inorganic Nutrients 

 

Even after decades in which measures to reduce nutrient inputs to the Baltic Sea have been 

implemented, the Baltic Sea eutrophication is still of major concern. With “Eutrophication is … 

the increased supply of plant nutrients (phosphorus and nitrogen compounds) to waters due to 

human activities in the catchment areas which results in an increased production of algae and 

higher water plants” (EUTROSYM, 1976). A more drastic description of the consequences of 

eutrophication is given by Duarte  et al. (2009) “The effects of eutrophication include the 

development of noxious blooms of opportunistic algae and toxic algae, the development of 

hypoxia, loss of valuable seagrasses, and in general a deterioration of the ecosystem quality 

and the services they provide”.  

Comparing the Pollution Load Compilation for the year 2010 (PLC-5.5) (HELCOM, 2015) with the 

for 2014 (PLC-6) (HELCOM, 2018) total waterborne and airborne inputs of nitrogen to the Baltic 

Sea decreased from 977,000 Mg to 826 000 Mg. For phosphorus the decline was given for 2006 

to 2014 from 35,500 Mg to 31,000 Mg without accounting for the less important atmospheric 
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deposition of about 2100 Mg determined for 2010.  

Atmospheric deposition of nitrogen in 2014 amounted to 223,800 Mg or 27 %, riverine to 573,000 

Mg (69 %), and direct point-sources to 28,900 Mg (4 %) of the total nitrogen input. By including 

the atmospheric deposition of 2,100 Mg of phosphorus to the Baltic Sea annually, the shares 

were 6 % atmospheric, 1600 Mg (5 %) from direct point-sources and 29,300 by rivers (89 %) of 

the total phosphorus input to the Baltic Sea. 

In 2010, 62 % of the atmospheric deposition of total nitrogen to the Baltic Sea originated from 

surrounding HELCOM countries (including the areas which are outside the catchment areas that 

drains to the Baltic Sea, e.g. in Denmark, Germany and Russia), 6 % from Baltic Sea shipping, 

18 % from the 20 EU countries which are not HELCOM Contracting Parties, and the remaining 

14 % from other countries and distant sources outside the Baltic Sea region. The seven largest 

rivers entering to the Baltic Sea (Daugava, Göta älv, Kemijoki, Nemunas, Neva, Odra, and Vistula) 

cover 51 % of the catchment area. Fifty-three per cent of total waterborne nitrogen and 54 % of 

phosphorus inputs entered the Baltic Sea in 2010 via these rivers, representing 46 % of the total 

river flow. The aim of the European Union's ambitious Marine Strategy Framework Directive is to 

protect more effectively the marine environment across Europe. The Marine Directive aims to 

achieve Good Environmental Status (GES) of the EU's marine waters by 2020 and to protect the 

resource base upon which marine-related economic and social activities depend 

(http://ec.europa.eu/environment/marine/eu-coast-and-marine-policy/marine-strategy-

framework-directive/index_en.htm).  

In Germany, riverine inputs of total phosphorus again declined between 2006 and 2014 by 14 %. 

In the same time-period, total nitrogen input decreased by 31% (HELCOM, 2018). Despite this 

positive development, German territorial waters and bordering sea areas of the Baltic Sea 

remained hypertrophied by up to 50 % in the western and up to 100% in the eastern part  

(HELCOM, 2017). To determine the effects of changes in nutrient inputs and to evaluate the 

results of reduction measures undertaken, the frequent monitoring of the nutrient situation is 

mandatory. Nutrients are core parameters since HELCOM established a standardized monitoring 

programme at the end of the 1970ies. According to the Marine Strategy Framework Directive 

Article 8 (Table 1 of Annex III) the following chemical parameter need to be monitored: spatial 

and temporal distribution of nutrients (Dissolved inorganic nitrogen, Total nitrogen, Dissolved 

inorganic phosphorus, Total phosphorus, Total organic carbon) and oxygen, moreover pH, pCO2 

profiles or equivalent information aimed at quantifying marine acidification. 

 

6.4.1 Surface water processes 

 

Phosphate and nitrate concentrations in the surface waters of temperate latitudes exhibit a 

typical annual cycle with high concentrations in winter, depletion during spring and summer, 

and recovery in autumn (NAUSCH AND NEHRING, 1996; NEHRING AND MATTHÄUS, 1991). Figure 32 

illustrates the annual cycle of nitrate and phosphate concentrations in the eastern Gotland Sea 

and in the Bornholm Sea in 2017. The data of five monitoring cruises of the IOW are 

supplemented by Swedish data of SMHI to get a better resolution of the seasonal patterns. In 

the central Baltic Sea, a typical phase of elevated nutrient concentrations developed during 

winter which lasts two to three months (NAUSCH et al, 2008). In 2017 already at low surface 

water temperature of below 4 °C, the spring bloom started in the central Gotland Sea and in the 
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Bornholm Sea end of March to early April that lead to a rapid decline of nitrate. The phosphate 

concentration decreased only slowly until the limit of detection that occurred end of May at the 

Gotland Deep station and mid-June at the Bornholm Deep station. At nitrate depletion the spring 

bloom likely terminated mid-April almost parallel in the Bornholm Sea and the eastern Gotland 

Sea in 2017. However, in the Gotland Sea slightly elevated nitrate concentrations were measured 

in August in times of low nutrient availability. The phosphate concentration then remained close 

to the detection limit in the Bornholm Sea in August, whereas in the central eastern Gotland Sea 

this period stretched from mid-June to mid- September in 2017.  

 

 
Fig. 32: Seasonal cycle of the average phosphate and nitrate concentrations in 2017 compared 

to temperature and salinity in the surface layer (0-10 m) at the Gotland Deep station (TF271 - left) 

and at the Bornholm Deep station (TF213 – right), respectively, by using IOW and SMHI data. 

 

In autumn, cooling enabled wind induced mixing and supply of nutrients from deeper layers. 

Mineralization processes at depth caused an increase in nutrient concentrations that 

subsequently replenished the surface water until the end of the year.   

The sluggish decline of phosphate is likely caused by the low dissolved inorganic N/P ratio 

present in the winter surface water of the Baltic Sea that already caused nitrate exhaustion 

before phosphate was consumed. The favorable uptake ratio is about 16 that was already shown 

by an early study of Redfield (REDFIELD et al., 1963) and was shown to be a valuable approximation 

many times thereafter. The N/P ratio (mol/mol) was determined from the sum of ammonium, 

nitrate, and nitrite concentrations versus the phosphate concentration. In the investigated areas 

the values were on average 10 mol/mol in the western Baltic Sea, slightly elevated compared to 

2016, and below 7 mol/mol in the Bornholm Sea and the Gotland Sea in 2016 and 2017. A clear 

decreasing trend is observed in 2017 from the Bornholm Sea to the southern Gotland Sea, further 

to the eastern, the northern, and the western Gotland Sea. The DIN/DIP ratio was found even 

above the “Redfield ratio” in the Odra Bank area of > 20 mol/mol. A clear decline of the DIN/DIP 

in the Bornholm Sea and Gotland Sea. This already indicated that nitrogen would become a 

limiting factor through the year 2017 giving diazotrophic cyanobacteria an advantage especially 

in the Gotland Sea. 
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Fig. 33: Average dissolved inorganic nitrogen versus phosphate ratio in surface waters of various 

Baltic Sea areas in February 2016 and 2017. 

 

In Table 9 winter phosphate and nitrate concentrations of surface waters are compiled. The 

values were in the range of previous years. However, slightly lower values were determined for 

the western Baltic Sea area, reflecting minimum values in 2017 compared to previous years and 

vice versa for the eastern Baltic Sea with elevated phosphate and nitrate values in the Bornholm 

Sea and the Gotland Sea in 2017. The clear variability of the values during the last five years 

indicate that the reductions in nutrient concentrations that have already been observed in 

coastal waters are up to now not reflected in the nutrients concentrations of the central Baltic 

Sea basins (NAUSCH et al., 2011b). The partial weak decline of nitrate in tandem with a slight 

increase of phosphate might be a consequence of the inflow that had replaced low nitrogen and 

phosphate enriched deep waters that may finally contribute to surface water outflow.  Also a 

correlation analysis of the ten-year data series for 2004 to 2013 revealed no significant changes 

for all investigated sea areas (NAUSCH et al., 2014). 
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Table 9: Mean nutrient concentrations in the surface layer (0-10 m) in winter in the western and 

central Baltic Sea (IOW and SMHI data). 

 

Surface water phosphate concentrations (µmol/l) in winter (Minima in bold) 

 

Station Monat 2013 2014 2015 2016 2017 

       

360 Feb.  0.72  +  

0.01  

0.57 ±  

0.01  

0.64 +  

0.01  

0.66 +  

0.04 

0.54  +  

0.01  

(Fehmarn Belt)       

       

022 Feb. 0.85 +  

0.01  

0.71  ±  

0.04 

0.63 +  

0.02 

0.79  +  

0.15  

0.5 3 +  

0.09 

(Lübeck Bight)       

       

012 Feb. 0.85 +  

0.01  

0.56 ±  

0.00 

0.60 +  

0.01  

0.68 +  

0.01  

0.56 +  

0.00 

(Meckl. Bight)       
 

      

113 Feb. 0.63 +  

0.01  

0.5 3 ±  

0.00 

0.56 +  

0.00 

0.64 +  

0.01  

0.5 3 +  

0.00 

(Arkona Sea)       

       

213 Feb. 0.71  +  0.0  0.70 ±  

0.01  

0.60 +  

0.00 

0.67 +  

0.06 

0.61  +  

0.06 

(Bornholm Deep)       

       

271 Feb. 0.54 +  

0.02 

0.52  ±  

0.01  

0.50  +  

0.02 

0.67 +  

0.04 

0.70 +  

0.08 

(Gotland Deep)       

       

286 Feb. 0.50  +  

0.01  

0.78  ± 

0.01  

0.60 + 

0.00 

0.65 +  

0.08 

0.69 +  

0.01  

(Fårö Deep)       

       

284 Feb. 0.56 +  

0.02 

0.84 ±  

0.01  

-  0.75  ±  

0.01  

0.79  ±  

0.03 

(Landsort Deep)       

       

245 Feb. 0.60 +  

0.02 

0.85 ±  

0.00 

0.80 + 

0.00 

0.87 +  

0.09 

0.91  +  

0.07 

(Karls Deep)       
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Surface water nitrate concentrations (µmol/l) in winter (Minima in bold) 

 

Station Monat 2013 2014 2015 2016 2017 

       

360 Feb. 4.1  +  0.0  4.9  ±  0.2  7.5  +  0.1  4.5  +  0.5  3.2  +  0.1  

(Fehmarn Belt)       

       

022 Feb. 6.7  +  0.1  6.6  ±  0.1  9 .3  +  0.2  6.3  +  0.1  4.5  +  0. 7  

(Lübeck Bight)       

       

012 Feb. 5 .8  +  0.0  4.5  ±  0.1  5 .5  +  0.0  4.8  +  0.1  4.4  +  0.0  

(Meckl. Bight)       
 

      

113 Feb. 3.2  +  0.0  5.2  ±  o .2  3.7  +  0.0  3.2  +  0.2  5.2  +  0.0  

(Arkona Sea)       

       

213 Feb. 3.0  +  0.0  4.0  ±  0.1  3.3  +  0.2  2 .8  +  0.2  3.8  +  0.1  

(Bornholm Deep)       

       

271 Feb. 2 .9  +  0.0  3.9  ±  0.0  3.1  +  0.0  3.4  +  0.4  3.9  +  0.3  

(Gotland Deep)       

       

286 Feb. 3. 0  +  0. 0  4.5  ±  0.1  3.4  +  0.0  3.3  +  0.5  3.9  +  0.1  

(Fårö Deep)       

       

284 Feb. 4.4  +  0.0  3.8  ± 0.3   3.9  ±  0.0  3.4  ±  0.2  

(Landsort Deep)       

       

245 Feb. 3.8  +  0.1   3 .5  ± 0.2  3.2  +  0.0  3.3  +  0.3  3.3  +  0.1  

(Karls Deep)       

 

 

6.4.2   Deep water processes in 2017 

 

In the deep waters of the central Baltic Sea basins, nutrient distribution is primarily influenced 

by the occurrence or absence of strong barotropic and/or baroclinic inflows. Figures 34 and 35 

illustrate the nutrient concentration distributions in the water column on transect between the 

Darss sill and the Northern Gotland Sea for the year 2017. It should be noted that anoxic 

conditions prevent mineralization of organic matter until nitrate. Instead ammonium is formed 

and represents the end product of the degradation of biogenic material (Table 10).  
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Table 10: Annual means and standard deviations for phosphate, nitrate and ammonium in the 

deep water of the central Baltic Sea (IOW and SMHI data). 

 

Annual mean deep-water phosphate concentration (µmol/l; Maxima in bold) 

Station Tiefe/m 2013 2014 2015 2016 2017 

       

213 80 1 .62 +  

0.35  

1 .49  +  0.31  1 .57 +  0.44  2.23 +  

0.29  

2.51  +  1 .15  

(Bornholm Deep)       

       

271 200 6.32  +  

0.92  

4.50 +  1 .54  2.16  +  

0.29 

2.56 +  

0.14  

2.91  +  

0.92 
(Gotland Deep)       

       

286 150 4. 77 +  

0.58 

4.60 +  0.67 3.26 +  

0.23 

2.93 +  

0.22 

2.49 +  

0.12 
(Fårö Deep)       

       

284 400 3. 89 +  

0.21  

3.85 +  0.35  3.57 +  

0.26 

3.25 +  

0.31  

3.08 +  

0.22 
(Landsort Deep)       

       

245 100 3.91  +  

0.53 

3.99 +  0.51  3.92 +  

0.19 

4.25 +  

0. 34 

3.77 +  

0.24  
(Karls Deep)       

       

 

Annual mean deep-water nitrate concentration (µmol/l; Minima in bold) 

Station Tiefe/

m 

2 0 1 3 2 0 1 4 2 0 1 5  2 0 16 2 0 1 7 

       

213 80 6 . 4  +  1 . 9  8 . 2  +  1 .8  1 1 . 1  +  2 . 5  1 0 . 4  +  1 .9  7 . 5  +  2 . 3  
(Bornholm Deep)       

       

271 200 0 . 0  +  0 0  0 . 0  +  0 0  7 . 5  +  3 . 3  9 . 3  +  0 . 7  1 . 8  +  2 .2  
(Gotland Deep)       

       

286 150 0 . 0  +  0 . 0  0 . 0  +  0 0  0 . 0  +  0 0  1 . 4  +  1 . 7  5 . 5  +  3 . 5  
(Fårö Deep)       

       

284 400 0 . 0  +  0 . 0  0 . 0  +  0 0  0 . 0  +  0 0  0 . 0  +  0 . 0  0 . 0  +  0 . 1  
(Landsort Deep)       

       

245 100 0 1 .  +  0 .2  0 . 0  +  0 0  0 . 0  +  0 0  0 . 1  +  0 0 0 . 1  +  0 . 0  
(Karls Deep)       
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Annual mean deep water ammonium concentration (µmol/l; Maxima in bold) 

Station Tiefe/

m 

2 0 1 3 2 0 1 4 2 0 1 5  2 0 16 2 0 1 7 

       

213 80 0 1 .  +  0 . 1  0 . 1  +  0 .2  0 . 2  +  0 . 1  0 . 2  +  0 . 1  0 . 2  +  0 . 3  
(Bornholm  Deep)       

       

271 200 2 2 . 1  +  8 . 7  1 8 . 4  +  

1 0 . 9  

1 . 6  +  3 . 7  0 . 2   +  0 . 0  0 . 8   +  0 .9  

(Gotland Deep)       

       

286 150 1 2 .6  +  3 . 0  1 2 . 8  +  3 . 6  7 . 2  +  2 .1  2 . 0  +  2 . 0  0 . 1  +  0 . 0  
(Fårö Deep)       

       

284 400 7 . 2  +  2 . 3  7 . 9  +  1 . 7  6 . 5  +  1 .1  7 . 8  +  3 . 3  3 . 8  +  1 . 9  
(Landsort Deep)       

       

245 100 6 . 5  +  3 . 1  7 . 7  +  2 . 1  7 . 7  +  1 . 2  9 . 7  +  1 . 7  8 . 4  +  1 . 5  
(Karls Deep)       

 

 

The Bornholm Basin is the westernmost of the deep basins, and barotropic and baroclinic inflows 

frequently ventilate its deep water. The last series of major Baltic Inflows began in November 

2013 and terminated a longer stagnation that persisted since 2003 and was briefly interrupted 

in 2007, only. Hence since February and March 2014 hydrogen sulphide decline propagated 

through the Baltic Sea. Oxic conditions were established in the Bornholm basin and in the 

eastern Gotland basin until the Fårö Deep. The latter shows partial oxygenic and remains of 

sulphidic conditions (cf. chapter 6.3). Moreover, the oxygen situation of the southern and 

eastern deeps improved even more by subsequent pulses of oxygenated saline water via the 

Arkona Sea and the Bornholm Sea to the eastern Gotland basin. Nutrient concentrations were 

impacted in various ways. Under oxic conditions nitrate re-appeared and phosphate is removed 

as particulate Iron phosphate during transition, thus reducing its concentrations to about 2 

μmol/l in the deep waters.  

After the MBI of December 2014 the stagnation period has started in 2015 in the Bornholm and 

Eastern Gotland Sea showing increasing phosphate concentration in 2017 in the deep waters, 

whereas in the Northern and Western Gotland Sea phosphate is basically declining (Table 10). 

The almost complete depletion of oxygen in the Gotland Deep caused a rapid decline of nitrate 

and an increase of ammonium. On the Fårö Deep station the nitrate concentration was still 

decreasing due to oxygen residues in the inflow water. In the Karls Deep deep water the 

ammonium concentration was again high (7-9 µmol/l). However, the value was almost halved to 

3.8 µmol/l in the deep water of the Landsort Deep since 2016. 
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Fig. 34a: Vertical distribution of nitrate 2017 between the Darss Sill and the northern Gotland 

Basin (February to May). 
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Fig. 34b: Vertical distribution of nitrate 2017 between the Darss Sill and the northern Gotland 

Basin (August to November). 

 

In Figure 39a the depletion of nitrate in surface water from February until May is well shown. In 

the deep water of the Gotland deep the depletion (February to March and August to November) 

and the intermediate enrichment (March to May and further to August) of nitrate during the year 

is visible (Fig. 34). This was likely coupled to the oxygen concentration that in turn determined if 

remineralization stopped at the oxidation state of ammonium in the anoxic case or continued 

until nitrate in the oxic situation. 
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Fig. 35a: Vertical distribution of phosphate 2017 between the Darss Sill and the northern Gotland 

Basin (February to May). 
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Fig. 35b: Vertical distribution of phosphate 2017 between the Darss Sill and the northern Gotland 

Basin (August to November). 

 

Figures 34 and 35 illustrate the horizontal and vertical distribution of nitrate and phosphate 

along the transects from the Darss Sill to the northern Gotland Basin for the five monitoring 

cruises performed in 2017.  

In Fig. 35 the accumulation of phosphate in bottom waters of the Bornholm Sea and the Gotland 

Sea during the year 2017 is well displayed. This is caused by remineralization of the particulate 

organic material after the sedimentation of the spring bloom and subsequently of the summer 

bloom.  
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6.5  Dissolved organic carbon and nitrogen 

 

Methods 

DOC was measured according to the accredited methods of the IOW analytic group. The devices 

TOC-V_CPH and TOC-L_CPH from Shimadzu were used to perform the direct method according to 

the HTC Method (High Temperature Combusting Method). First, samples were defrosted in an 

ultrasonic bath for five minutes and thoroughly mixed before being placed in an Autosampler-

Vial. Inorganic carbon was extracted by acidifying (pH 2) flushing the sample with carbon--free 

air. Thus, all inorganic carbon was converted and expelled as CO_2. Following, the sample 

volume was injected into a combustion tube filled with platinum-coated ammonium-oxide 

spheres functioning as a catalyst. At 680  all NPOC (non-purgeable-organic-carbon) was burned 

to CO_2. By reducing the temperature of the gases to 1 oC in a spiral-shaped cooling tubing 

moisture was extracted in the dehumidifier. Before reaching the non-dispersive infrared 

detector, halogens were eliminated in the halogen scrubber in consequence of oxidation with 

copper. Finally, CO_2 was measured. For the measurement the content of every sample vessel 

was separated in two Autosampler-vials. Both samples were analyzed independently whereby at 

least four to five valid injections of 75 µm/L of each vial were assessed and subsequently a mean 

DOC concentration calculated. The method is verified in the past in labor experiments and 

intercalibration exercises, with results being published in HEDGES AND LEE (1993), SHARP et al. 

(2002a, b; 2004) and NAGEL AND PRIMM (2003). For the procedere a refence material, the so called 

Consensus Reference Water (www.rsmas.edu/groups/biogeochem/CRM.html) is used.  

 

The limit of quantification for DOC is set to DOC < 25 μmol/L and the standard deviation of the 

procedure to DOC < 3 µmol/L. Our ongoing and accredited quality management ensures 

comparability of the results over long periods of time. The absolute measurement uncertainty for 

DOC is at 4.4 μmol/L C as stated in the IOW accreditation reports. Regular, at least twice a year, 

quality control of the measurements is ensured by participation in the QUASIMEME calibration 

effort. This exercise is part of WEPAL (Wageningen Evaluating Programmes for Analytical 

Laboratories), which is accredited for the organization of Interlaboratory Studies by the Dutch 

Accreditation Council RvA since April 26, 2000 based on the ISO 17043 requirements 

(registration number R002).  

 

The dissolved organic matter (DOM) in the Baltic Sea is an important participant within the 

carbon and nutrient cycles. In general, the DOM correlates with the salinity of the water. Higher 

dissolved organic carbon (DOC) values at low salinities reflect the input from terrestrial sources. 

The high saline and DOM less water originate from the North Sea.  

A summary of all IOW long term data from 1995 – 2017 are shown in figures (36-40). 

As consequence the DOC in surface water of the Baltic Sea has higher concentrations (200 – 500 

µmoles C/dm3) than the deep water (150 – 420 µmoles C/dm3) at all stations. The concentration 

of dissolved organic nitrogen (DON) varies due to biogeochemical processes in the water column. 

The particulate carbon and nitrogen has 5-10 times lower levels than the dissolved forms (Fig. 39-

40). Higher variability reflects the seasonality of the biological production and remineralisation 

processes.  

http://www.rsmas.edu/groups/biogeochem/CRM.html
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        Fig. 36a: Dissolved organic carbon in the surface water from 1995-2017. 

 

 
         Fig. 36b: Dissolved organic carbon in the bottom water from 1995-2017. 
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        Fig. 37a: Dissolved organic nitrogen in the surface water from 1995-2017. 

 

 
        Fig. 37b: Dissolved organic nitrogen in the bottom water from 1995-2017. 
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        Fig. 38a: Relation of dissolved organic carbon and nitrogen in the surface water  

                         from 1995-2017. 

 

 
        Fig. 38b: Relation of dissolved organic carbon and nitrogen in the bottom water 

                         from 1995-2017. 
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        Fig. 39a: Particulate organic carbon in the surface water from 1995-2017. 

 

 

 
        Fig. 39b: Particulate organic carbon in the bottom water from 1995-2017. 
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        Fig. 40a: Particulate organic nitrogen in the surface water from 1995-2017. 

 

 
        Fig. 40b: Particulate organic nitrogen in the bottom water from 1995-2017. 

 

The relation of DOC/DON (C/N ratio) has in general mean values (16-20) near the redfield ratio in 
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0

5

10

15

20

25

30

0 5 10 15 20 25 30

P
O

N
 [

µ
m

o
le

s 
N

/L
]

salinity [PSU]

PON surface

1995-2017

2017

0

5

10

15

20

25

30

0 5 10 15 20 25 30

P
O

N
 [

µ
m

o
le

s 
N

/L
]

salinity [PSU]

PON bottom

1995-2017

2017



87 

 

The seasonal data of DOC, DON at the stations in the Arkona and Gotland Basin are shown in 

Fig. 41 and 42. Surface DOC, DON values at both stations are very similar around 300 mmol/L 

res. 15 mmol/L with no considerable seasonal changes.  

The DOC/DON ration are similar too. Only the particulate (POC, PON) data shown higher values 

at station 271 in the Gotland basin in May and August due to the higher biological productivity in 

spring/summer 2017.  

 

 
       Fig. 41a: Surface (2m) and bottom (46 m) dissolved organic carbon (µmol/l) at Station  

                        TF0113 in the Arkona Basin. 

 

 
       Fig. 41b: Surface (2m) and bottom (46 m) dissolved organic nitrogen (µmol/l) at Station  

                         TF0113 in the Arkona Basin. 
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        Fig. 42a: Surface (2m) and bottom (236 m) dissolved organic carbon (µmol/l) at Station  

                       TF0271 in the eastern Gotland Basin. 

 

 
       Fig. 42b: Surface (2m) and bottom (236 m) dissolved organic nitrogen (µmol/l) at Station  

                        TF0271 in the eastern Gotland Basin. 
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        Fig. 42c: Surface (2m) and bottom (236 m) particulate organic carbon (µmol/l) at Station  

                         TF0271 in the eastern Gotland Basin. 

 

 
       Fig. 42d: Surface (2m) and bottom (236 m) particulate organic nitrogen (µmol/l) at Station  

                        TF0271 in the eastern Gotland Basin. 
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Summary 

 

For the southern Baltic Sea area, the cold sum of 31.7 Kd at Warnemünde station amounted to a 

mild winter in 2016/17. This value plots far below the long-term average of 101.8 Kd in 

comparative data from 1948 onwards and ranks as 15th warmest winter in this time series. Only 

three cold period occurred in mid-November, beginning of January and beginning of February 

which led to this cold sum. Only November 2016 and January 2017 showed monthly average 

temperatures below the long-term average, all other winter months were too warm. 

With a warm sum of 159.5 Kd, recorded at Warnemünde, the summer 2017 is ranked in the 

midrange over the past 70 years on 28th position and around the long-term average of 153.4 Kd. 

The summer 2017 can be classified as moderate.  

 

With respect to sea surface temperature, the year 2017 was the eleventh-warmest year since 1990 

and with 0.24 K slightly above the long-term SST average. March, April and October - December 

contributed to the average by their positive anomalies. July and August were characterized by 

negative anomalies. The anomalies reached maximum values of +2 K and -3 K. The winter of 

2016/2017 was comparatively warm, as shown in the cold sum of air temperature of 

Warnemünde but also in the SST. The resulting temperature trend was 0.6 K per decade.    

 

Two inflow events with estimated volumes between 188 km³ and 210 km³ occurred in the Baltic 

Sea in 2017. On February 13th, the gauge at Landsort Norra recorded a lowstand of -46 cm MSL 

as a result of preceding long lasting easterly winds. A system shift to strong westerly winds 

caused a sea level rise to 15.6 cm (March 3rd) and a resulting total volume of 210 km³ was 

calculated. For this event a salt transport of 1.3 Gt and highly saline volume transport of 68 km³ 

was calculated with data of the MARNET stations Darss Sill and Arkona Basin by MOHRHOLZ 

(submitted). The bottom salinity at the Darss Sill only for a short time exceeded 17 g/kg and the 

stratification was too high to classify this event as a Major Baltic Inflow described in NAUMANN et 

al. (submitted). A second inflow phase of week classification occurred from October 2nd to 9th, 

the sea level rose rapidly from -25.4 cm MSL to 26.4 cm MSl comprising a total volume of 188 

km³. 

 

The annual cycle of oxygen saturation in the surface water was again typical in 2017. Oxygen 

conditions in the deep water of the basins of the central Baltic Sea are primarily influenced by 

the occurrence or absence of strong inflows. The Bornholm Basin is the westernmost of the deep 

basins. Barotropic and baroclinic inflows are often able to ventilate its deep water. The situation 

in 2017 was coined by oxygen deficiency showing an annual mean of 0.88 ml/l bottom-near at 

80 m water depth. At the bottom of the eastern Gotland Basin a decreasing trend of dissolved 

oxygen concentration continued after the oxygenation events from mid 2014 to mid 2016 caused 

by several Major Baltic Inflows and smaller intrusions. In 2017 an annual mean of 0.07 ml/l was 

measured at the bottom of Gotland Deep and hydrogen sulphide was present permanently. Since 

the beginning of the intensive inflow activity in 2014 farther north areas and the western Gotland 

Basin showed their lowest hydrogen sulphide concentrations during 2017, indicating the time 

delayed impact of these events. The Farö Deep showed a complete removal of hydrogen sulphide 

and a bottom-near mean oxygen concentration of 0.33 ml/l in 2017. The latest weak inflows of 
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wintertime 2016/2017 passed the 120 m sill depth between eastern Gotland Basin and Farö Deep 

and transported oxygenized water bodies to this northern/central part of the Baltic Sea. 

 

Nutrient conditions in the deep basins reflect the the occurrence or absence of strong barotropic 

and/or baroclinic inflows. The very strong Major Baltic Inflow of December 2014 and subsequent 

intrusions still influenced the nutrient situation in the deep water of the Northern and western 

Gotland Basin in 2017. For example, the annual mean of nitrate increased from 1.4 µmol/l to 5.5 

µmol/l and ammonium reduced nearly completely (0.1 µmol/l) at the bottom of the Farö Deep. In 

the eastern Gotland Basin the stagnation period has started in 2016. Correspondingly, 

phosphate and ammonium concentrations were increasing to 2.91 µmol/l (PO4) and 0.8 µmol/l 

(NH4) as annual mean in 2017 at the bottom of the Gotland Deep. Whereas the spatial and 

temporal dynamic of the nitrate concentration indicates that oxygen was partly slightly above 

zero and afterwards again zero or even below zero, with a spatial and temporal variability as well. 

The annual mean reduced from 9.3 µmol/l in 2016 to 1.8 µmol/l in 2017. In the southern located 

Bornholm Basin, the situation changed only slightly compared to 2016. Annual means of 2017 of 

bottom near water at the Bornholm Deep showed a slight increase of phosphate (2.23 µmol/l to 

2.51 µmol/l), a slight decrease a nitrate (10.4 µmol/l to 7.5 µmol/l) and constant ammonium 

concentration of 0.2 µmol/l in both years. 
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