
User’s guide to the “Validator” interactive
ocean model validation tool

Hagen Radtke∗

Leibniz Institute for Baltic Sea Research Warnemünde (IOW)

February 20, 2019

About this document

This document describes how to install, configure and use “Validator”, an interactive ocean
model validation tool. It provides a web-based, interactive interface to create plots which
compare modelled and measured data at oceanographic stations.

∗hagen.radtke@io-warnemuende.de

https://www.io-warnemuende.de


Table of Contents

1 Introduction 4
1.1 Philosophy of Validator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Structure of this document . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Installing Validator 5
2.1 Obtaining Validator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Installing on a local Linux machine . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Installing R and RStudio . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Installing required R packages . . . . . . . . . . . . . . . . . . . . 5
2.2.3 Optional: Installing MySQL server to enable data acquisition from

the example database . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Installing on a Linux server . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Installing R and the required packages . . . . . . . . . . . . . . . . 7
2.3.2 Optional: Installing MySQL to enable data acquisition from the ex-

ample database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.3 Installing Shiny Server . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.4 Allowing client access to Shiny Server . . . . . . . . . . . . . . . . 8

3 Using Validator 8
3.1 Launching Validator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 Launching Validator on a local machine . . . . . . . . . . . . . . . 8
3.1.2 Launching Validator on a Linux server . . . . . . . . . . . . . . . . 8

3.2 Applying Validator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.1 Selecting which data to show . . . . . . . . . . . . . . . . . . . . . 9
3.2.2 Selecting plot types . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.3 Saving plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Supplying own data 12
4.1 Providing measured data . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1.1 Defining the oceanographic stations . . . . . . . . . . . . . . . . . 12
4.1.2 Defining the set of variables . . . . . . . . . . . . . . . . . . . . . 13
4.1.3 Defining the temporal range of the dataset . . . . . . . . . . . . . 13
4.1.4 Providing the data as ASCII files . . . . . . . . . . . . . . . . . . . 13
4.1.5 Providing the data as SQL database . . . . . . . . . . . . . . . . . 14
4.1.6 Connecting to your own database . . . . . . . . . . . . . . . . . . 15

4.2 Providing model data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.1 The model list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.2 Providing NetCDF files . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Providing data for the station maps . . . . . . . . . . . . . . . . . . . . . 16

5 Example data 18

2



1 Introduction

1.1 Philosophy of Validator

Validator is an interactive ocean model validation tool in which the user can easily create
plots in a web browser within seconds. These plots of different type (time series, vertical
profile, scatter plot, ...) allow to compare one to four models to observations.

In order to create these plots quickly, the model data have to be preprocessed: One
NetCDF file per oceanographic station has to be provided. This can be done by extracting
the station data from existing 4-d model output, or, ideally, by saving data at the pre-
scribed stations already during the model run.

In the latter case, the model can be validated while it is still running. Often a modeller
tries modifications to their model to improve its performance. In this way, the success of
these modifications can be checked while the model is still running, allowing to cancel
unsuccessful model runs and to save valuable computing time.

On the other hand, the figures produced by this validation tool can be saved as high-
resolution PNG images ready to use in scientific publications.

1.2 Details

Details on the implementation can be found in the following publication:

Radtke, H., Börgel, F., Brunnabend, S., Eggert, A., Kniebusch, M., Neumann, D., Neu-
mann, T., Placke, M.: “Validator - a web-based interactive tool for validation of ocean mod-
els at oceanographic stations”, Journal of Open Research Software, submitted.

1.3 Structure of this document

The following four sections describe installation and use of the Validator app. They are
aimed at different skill levels as indicated in the following table.

Section describes required skills

Section 2 Installing Validator some computer skills

Section 3 Using Validator none (very easy)

Section 4 Supplying own data familiarity with NetCDF format

– Extending Validator advanced programming in R

3



2 Installing Validator

2.1 Obtaining Validator

2.2 Installing on a local Linux machine

Validator requires a Linux environment. If you are working on Windows, probably the best
way is to set up a virtual Linux machine, e.g. using Oracle VM VirtualBox:
https://www.virtualbox.org/

Inside this virtual machine, you need to install an operating system. We have tried open-
SUSE and can recommend it:
https://software.opensuse.org/distributions/leap

2.2.1 Installing R and RStudio

If you use Linux, then R and RStudio may be available as native packages for your Linux
distribution, and you can install them via the package manager. Otherwise, please install
R first
https://www.r-project.org/

When that is done, install RStudio as described here:
https://www.rstudio.com/products/rstudio/download/.
We recommend the Open Source license.

2.2.2 Installing required R packages

Validator requires a few R packages to be installed. Please install them using the following
commands:
install.packages("shiny")
install.packages("ggplot2")
install.packages("RCurl")
install.packages("RNetCDF")
install.packages("plotrix")
install.packages("mgcv")

In case it does not work, you will probably need to install some Linux packages first,
such as a netCDF package. This depends on your Linux distribution.

4

https://www.virtualbox.org/
https://software.opensuse.org/distributions/leap
https://www.r-project.org/
https://www.rstudio.com/products/rstudio/download/


2.2.3 Optional: Installing MySQL server to enable data acquisition from the example
database

Instead of reading measurement data from static text files, we will want to read them di-
rectly from a database. The advantage is that if the database is updated, new data will
immediately become available.

Validator is able to link to a database to obtain measured data. These are then cached
in ASCII files to minimize database queries and speed up the plotting.

In order to demonstrate this capability, we provide an example database which is made
available by a MySQL server and the MariaDB client. The contents of this database are
provided in the file
mysql_example/measurements.sql
The following instructions describe how to set up a MySQL database providing these data
to Validator:

• Install the MySQL server first. This can be done by installing the appropriate pack-
age(s) for your Linux distribution, in openSUSE you will need the packages “mari-
adb” and “libmysqlclient-devel” which are included in the distribution
sudo zypper install mariadb libmsyqlclient-devel
For Ubuntu 18.04, the following packages need to be installed:
sudo apt-get install mysql-server libmysqlclient-dev

mariadb-client
Installation instructions for other operating systems can be found here:
https://downloads.mariadb.org/mariadb/repositories/

• Start the MySQL service. In openSUSE, this is done by the following command:
sudo service mysql start

• Import the validatortest database into MySQL:
sudo mysql -u root
CREATE DATABASE measurements;
QUIT;
sudo mysql -u root measurements <

/PATH_TO_DIR/mysql_example/measurements.sql

• Create a user validator which gets read access to your database:
sudo mysql -u root
CREATE USER 'validator'@'localhost' IDENTIFIED BY 'test';
USE measurements;
GRANT SELECT ON * TO 'validator'@'localhost';
QUIT;

Here,PATH_TO_DIR stands for the path where the contents of thevalidator.zip
file were extracted to, and test is the password by which Validator connects to the
database.

5

https://downloads.mariadb.org/mariadb/repositories/


• The last step is to install the R package providing access to the MySQL database,
RMariaDB. To do so, just run R or RStudio and type:
install.packages("RMariaDB")
More information on this package can be found here:
https://github.com/r-dbi/RMariaDB

2.3 Installing on a Linux server

Installation on a Linux server is almost the same as on a local Linux machine. The differ-
ence is that instead of running the software in RStudio, we will run it by Shiny Server. This
allows several users to use the program simultaneously in different sessions.

The Linux Server can be a virtual machine, we have tried openSUSE as operating system
and recommend it.

2.3.1 Installing R and the required packages

Install R as described in Section 2.2. Then, install the required R packages under R directly
(not in RStudio).

2.3.2 Optional: Installing MySQL to enable data acquisition from the example
database

Installing MySQL works just the same way as on a local machine, see Section 2.2.3.

2.3.3 Installing Shiny Server

Afterwards, you will need to install Shiny Server. You will find installation instructions
here:
https://www.rstudio.com/products/shiny/download-server/

After installing it, you will need to configure the shiny server. You will find detailed in-
structions here: http://docs.rstudio.com/shiny-server/. You basically have
to provide a configuration file which tells the Shiny Server where to find the Shiny Apps to
run under defined URLs on this server. In openSUSE, this resides under
/etc/shiny-server/shiny-server.conf

An example configuration file is given under
shiny_server_example/shiny-server.conf

6

https://github.com/r-dbi/RMariaDB
https://www.rstudio.com/products/shiny/download-server/
http://docs.rstudio.com/shiny-server/


2.3.4 Allowing client access to Shiny Server

Shiny Server will use the port specified in the configuration file to communicate with its
clients. If you are using a virtual machine, you will need to configure port forwarding to
make the ports of the virtual machine accessible from outside. In Oracle VM VirtualBox,
this can be done under “Change - Network - Advanced - Port forwarding”.

Finally, make sure you open the chosen port in the firewall to allow the Shiny Server to
be accessed from other machines.

3 Using Validator

3.1 Launching Validator

3.1.1 Launching Validator on a local machine

Open RStudio and execute the following commands:
setwd("/PATH_TO_DIR/")
library("shiny")
runApp()
The first command will change the working directory to the path where you downloaded
Validator to. Please make sure you enter the path whereserver.R is located. The second
command will load the shiny package and the last command will launch the Validator
app.

Please click on "‘show in browser"’ then to allow full functionality.

3.1.2 Launching Validator on a Linux server

If you run Validator on a server, it will run automatically once the shiny server is launched,
which will typically happen during startup. Just open the following URL in your browser:
http://127.0.0.1:3838/validator

This URL is correct if you run the browser on the server. Otherwise, please replace
127.0.0.1 by the ip or hostname of your server and 3838 by the port you configured
in the port forwarding. If you use port 80, you can leave out :3838 completely, in which
case you may just need to enter something like
http://shinyserver/validator

7

http://127.0.0.1:3838/validator
http://shinyserver/validator


3.2 Applying Validator

Validator runs in your web browser and appears as a web page structured into three parts.
In the left column, you select which data shall be shown (which oceanographic station,
which parameter, …). In the top row, you specify how it shall be shown (as a time series,
a vertical profile etc). The main frame in the bottom right shows the diagram which is
produced and allows to save it.

Figure 1: Screenshot of the Validator app in a browser window.

3.2.1 Selecting which data to show

The left column allows first to select an oceanographic station from a list or from a map. If
you click "‘map..."’, a map will show up with clickable stations showing up on it. The top
row then allows to switch between different maps.

The next choice to make is the parameter to compare between model and observations,
e.g. salinity or temperature.

8



Third, up to four models can be selected from a predefined list, each of which will be
shown in a different colour in the plots which are generated. The model list can be modified
(e.g. extended by a new model). To do so, click "‘other models..."’. Then, by clicking on
"‘download default model list"’, you will see how a model list looks like. You can modify
it and then upload it using the button "‘choose own model list"’, which makes the other
models available for plotting.

The remaining settings are self-explanatory, they allow a subsetting of the data in time
and space.

3.2.2 Selecting plot types

The top row allows a selection of plot types. Some plot types have additional settings
which shall be explained here.

• Time series: Model data are vertically averaged (it might make sense to select a
narrow depth range) and drawn as a colored horizontal curve, while individual mea-
surements inside the depth range are shown as black crosses.

• Vertical profile: Model data are averaged over time and drawn as a colored verti-
cal curve, while individual measurements from inside the specified time range are
shown as black crosses. The options allow to draw not only the temporal mean, but
also a range in which the model values in a given depth are scattered. This range
shows up as a semi-transparent background.

• Scatter plot: For this plot type, we find the nearest model data point in time and
space for each individual measurement. Then pairs of measured and modeled data
are shown, with the measurements on the x-axis and the corresponding model re-
sults on the y-axis. A colored line shows a simple linear fit to the model data. Op-
tionally, a confidence interval can be drawn which shows how uncertain the offset
and slope of the linear fit are.

• Taylor diagram: Pairs of observed and modeled data are formed as in the scatter
plot. The vector of observations is then compared to that of the corresponding model
results in terms of correlation coefficient and standard deviation. Ideally, the model
should have a perfect correlation coefficient of 1.0 and the same standard deviation
as the observations. In practice it has mostly not, and the Taylor diagram allows to
check how well different models correlate, and whether they over- or underestimates
the variability showing up in the measurements.

• Trend analysis: This plot allows to discriminate between seasonal and long-term
changes and see which of these are similar in the model and in the measurements.
To do so, a Generalised Additive Mixed Model (GAMM) is fitted to the observations
and the model results separately. This nonparametric model tries to fit the data
by a sum of a smooth nonlinear long-term trend, a smooth and periodic nonlinear

9



seasonal cycle, and a cAR-1 correlated error term. The options allow to select which
of the terms is shown by the horizontal curves in the graph.

3.2.3 Saving plots

All generated plots can be saved in .png format using the button "‘Save the plot as..."’
under the graph. Independent from the current screen resolution, they will be saved in a
publication-ready resolution.

10



4 Supplying own data

The Validator app requires two types of data to be provided: Measured data and model
data. Both have to be provided for predefined oceanographic stations.

Measurements can either be given as a collection of ASCII files, or dyamically extracted
from a database. Model data need to be provided as NetCDF files. The specific format
requirements are explained later in this section.

4.1 Providing measured data

More than one dataset of measurements can be provided to Validator. Each of these
datasets, no matter whether the data are provided as ASCII files or from a database, should
reside in a specific subdirectory. These locations are provided in the file datasets.txt
in the Validator main directory. It contains one header line:
name;path;format
and one line for each dataset, where the following is provided separated by semicolons
and without quotes:

• name – the name of the dataset that shall appear in the drop-down list where a
dataset can be selected

• path – the path to the dataset directory, can be relative or absolute; make sure that
read permissions (when reading from ASCII files) or write permissions (when reading
from SQL database) exist, especially when running on a server

• format – the format in which the data are provided. The following options are pos-
sible:

– standard – ASCII files as described in Section 4.1.4

– sqldb – SQL database as described in Section 4.1.5

Alternatively, user-specific options can be provided as long as a function to obtain
the data is added to the R script read_measured_data.R and referenced in the
files do_the_plot.R and model_validation_plot.R.

4.1.1 Defining the oceanographic stations

In the dataset directory, provide an ASCII file stations.csv with the following header
line:
latitude;longitude;stationname;depth;red;green;blue
and one line for each oceanographic station, where the following is provided separated by
semicolons and without quotes:

• latitude – latitude of the station in degrees north (negative=south), as decimal
degrees using a dot as separator, e.g. 57.33

11



• longitude – longitude of the station in degrees east (negative=west), as decimal
degrees using a dot as separator, e.g. 20.0

• stationname – name of the station e.g. from a monitoring program

• depth – depth of the station in meters, e.g. 120.5

• red;green;blue – color in which this station shall appear on the map, e.g.
1.0;0.0;0.0 for red

4.1.2 Defining the set of variables

In the dataset directory, provide an ASCII file variables.csv with the following header
line:
varname;unit;longname
and one line for each oceanographic station, where the following is provided separated by
semicolons and without quotes:

• varname – a short variable name or abbreviation which is used in the file names or
in the database, e.g. temp

• unit – the unit as it will be added to the plot axes, e.g. degC

• longname – the name of the variable as it will be added to the plot axes, e.g.
temperature

4.1.3 Defining the temporal range of the dataset

In the dataset directory, provide a file timerange.txt which describes the temporal
range your dataset covers. It shall contain two lines giving the start and end date as YYYY-
MM-DD, e.g.:
1877-01-01
2015-12-31

4.1.4 Providing the data as ASCII files

Create a subdirectory stationdata in the dataset directory. In this subdirectory, supply
text files of the following names:
varname_stationname.csv
where varname stands for the variable name as specified in variables.csv and
stationname stands for the station name as specified in stations.csv. Both have
to be given in lowercase.

Each of these files shall contain a header row
depth;datetime;value

12



and one line for each oceanographic station, where the following is provided separated by
semicolons and without quotes:

• depth – depth below sea level in meters, given as decimal value with a dot as a
decimal separator, e.g. 50.0

• datetime – date and time of the measurement in Windows time format, that is,
as a decimal number given as "‘days since 1899-12-30 00:00:00 UTC"’, e.g. 2.0 for
January 1st, 1900; values can be negative

• value – the value of the measurement in the unit specified in variables.txt

If there are no measurements of this variable at this station, please supply a file con-
taining the header line only.

4.1.5 Providing the data as SQL database

The data can be provided in an SQL database. Obviously the SQL queries which validator
uses will depend on your database structure. This subsection describes how to connect
to a database which has the same structure as the example database given in
/PATH_TO_DIR/mysql_example/measurements.sql
Subsection 4.1.6 will describe what to do if your database looks different.

In our example, we connect to a MySQL database with two tables:

TABLE variables
column name data type key
id INT primary
varname CHAR(20)
unit CHAR(20)
longname CHAR(40)

TABLE measurements
column name data type key
id INT primary
longitude DOUBLE
latitude DOUBLE
depth DOUBLE
datetime DATETIME
variable INT foreign (variables.id)
value DOUBLE

Create a file db_connection.txt in the dataset directory with the following header
line
username;password;host;port;databasename
and one line following, which gives the follwing information separated by semicolons:

13



• username– the user name under which Validator connects to connect to the MySQL
database, enclosed in single quotes

• password – the password for this user, enclosed in single quotes, '' if no pass-
word is required

• host – the hostname or IP adress of the database server, enclosed in single quotes,
'localhost' if running locally

• port – the port under which the connection to the MySQL server shall be estab-
lished, 0 by default

• databasename – the name of the database, enclosed in single quotes

Finally, create an empty folder stationdata in the dataset directory. Make sure that
Validator has write access to this folder, as it will be used to store cached data downloaded
from the database.

4.1.6 Connecting to your own database

If your own database looks different, you need to do the following steps:

1. Find out how to connect to the database from R.

2. In addition to standard and sqldb, define another dataset type, e.g. mydb. Du-
plicate the parts of the code where sqldb is used in the following files:

• do_the_plot.R

• model_validation_plot.R

• read_measured_data.R

3. In the duplicates, replace sqldb by mydb.

4. Inread_measured_data.R, modify the functionread_measured_data_mydb
to fit your database.

4.2 Providing model data

4.2.1 The model list

The file models.txt describes the models which can be compared by Validator. it shall
contain a header row
name;path
and one line for each model to be compared, where the following is provided separated
by semicolons and without quotes:

• name – the name of the model which shall appear in the model list

14



• path– a path to the directory where the NetCDF files for model validation are stored,
absolute or relative to the Validator base directory

Make sure Validator has read access to the files in this folder.

4.2.2 Providing NetCDF files

For each oceanographic station, provide one NetCDF file namedstationname.ncwhere
stationname is the lowercase station name corresponding to the file stations.csv
in a dataset directory. It shall contain two dimensions:

dimension name data type attribute value
time double units days since 1899-12-30 00:00:00
zaxis double units meters

positive down

In fact arbitrary axis names are allowed if they start with t or T / z or Z, respectively.
Additional axes are allowed as long as they do not start with any of these letters. Also,
the time unit or the date origin can be different and will be converted automatically. The
values at the z axis should be zero at the surface and increase with depth.

For each variable in the data file, there should be a NetCDF variable defined with the
name
MODEL_VARNAME where VARNAME is the uppercase variable name which matches the
file variables.csv in a dataset directory, e.g SALIN. The variable shall have the z and
t dimensions defined above, and possibly other dimensions of length one (e.g. longitude
and latitude). It can have data type float or double.

So, there are some limitations:

• The data need to be on fixed vertical levels. If your vertical model coordinates are
not fixed, you will require z level interpolation.

• Axis bounds are ignored, so cell thicknesses cannot be defined. If your z axis is not
equidistant and you want precise values for vertical averages (e.g. when plotting
a time series of salinity averaged over a large depth range), you should consider
regridding.

4.3 Providing data for the station maps

The locations of the stations are provided in the measurement dataset. To draw them onto
a map where they can be selected by clicking, two more pieces of information are needed:

• The coordinates of the map, and

• the coastline.

15



A set of map regions can be provided in the file regions.txt in the Validator main
directory. It shall start with the line
name;latmin;latmax;lonmin;lonmax;coastline
and then have one line for each map view, containing the following separated by semi-
colons and without quotes:

• name – the name of the region as shown on the radio button by which it can be
selected

• latmin – latitude of the lower map boundary, in degrees, positive in the northern
hemisphere

• latmax – latitude of the upper map boundary, in degrees, positive in the northern
hemisphere

• lonmin – longitude of the left map boundary, in degrees, positive in the eastern
hemisphere

• lonmax – longitude of the right map boundary, in degrees, positive in the eastern
hemisphere

• coastline – the path to a file containing the coordinates of coastline segments,
absolute or relative to the Validator main directory

The same coastline file may be used for different map views. A coastline file is structured
as follows: It shall start with the line
longitude;latitude
and then have one line for each endpoint of a coastline segment, giving longitude and
latitude in degrees, separated by a semicolon. Consecutive points will be connected with
lines unless they are separated by a row
-1000;-1000
which marks a break between individual polylines. These breaks are typically required to
define island coasts which are separated from the mainland coastline.

16



5 Example data

The example data which are provided with Validator are in-situ measurements of temper-
ature and salinity. They were extracted from the IOW database. The data request to the
IOW database can be repeated using the following link:
https://odin2.io-warnemuende.de/980-0706-377
The data are licensed under the CC BY 4.0 license.

License

The Validator software including this manual is published under the MIT license.

Copyright 2019 Hagen Radtke (hagen.radtke@io-warnemuende.de)

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED AS IS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNEC-
TION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

17

https://odin2.io-warnemuende.de/980-0706-377

	Introduction
	Philosophy of Validator
	Details
	Structure of this document

	Installing Validator
	Obtaining Validator
	Installing on a local Linux machine
	Installing R and RStudio
	Installing required R packages
	Optional: Installing MySQL server to enable data acquisition from the example database

	Installing on a Linux server
	Installing R and the required packages
	Optional: Installing MySQL to enable data acquisition from the example database
	Installing Shiny Server
	Allowing client access to Shiny Server


	Using Validator
	Launching Validator
	Launching Validator on a local machine
	Launching Validator on a Linux server

	Applying Validator
	Selecting which data to show
	Selecting plot types
	Saving plots


	Supplying own data
	Providing measured data
	Defining the oceanographic stations
	Defining the set of variables
	Defining the temporal range of the dataset
	Providing the data as ASCII files
	Providing the data as SQL database
	Connecting to your own database

	Providing model data
	The model list
	Providing NetCDF files

	Providing data for the station maps

	Example data

